본문 바로가기
  • 과학과 놀자

    갯벌은 생태적기능·오염정화·재해예방 등 보물같은 공간

    우리나라는 삼면이 바다로 둘러싸여 있다. 특히 서해안과 남해안은 동해안과 달리 밀물과 썰물의 차가 커서 바닷물이 빠지면 넓은 갯벌이 드러난다. 갯벌은 강의 하류와 바다가 만나는 지점으로, 밀물과 썰물 시간에 따라 물에 잠기거나 공기에 노출돼 생물 다양성이 풍부하다.선사시대부터 갯벌은 사람들의 생활 터전이었다. 식량 자원이 풍부한 바닷가에서 거주해 신석기시대의 조개더미가 발견되고, 삼국시대에는 미역을 먹었다는 기록도 《삼국유사》에서 볼 수 있다. 지금도 갯벌은 갯마을 사람들에게 먹을거리를 무한 제공하며 생물자원의 생산지 역할을 하고 있다. 또 갯벌은 육지에서 배출돼 퇴적되는 오염물과 부유물 등의 오염물질을 정화시키고, 홍수 및 태풍으로 인한 피해를 감소시키기도 한다. 게다가 아름다운 경관과 관광 등 여가 활동을 제공하니, 이 얼마나 소중한 곳인가!갯벌을 아직 가보지 않았다면 방학이나 주말을 이용해 찾아가보자. 갯벌 생태계에 가서 직접 다양한 종을 탐색한다면 종 다양성의 의미를 경험할 수 있을 것이다. 찰흙처럼 고운 곳, 모래가 많은 곳, 자갈이 깔린 곳, 갯바위로 이뤄진 곳 등 갯벌의 모습은 다양하다. 이 중 갯바위에는 여러 종의 생물이 부착해 살아가므로 갯바위가 보전된 지역에 가면 진흙 갯벌보다 다양한 종을 관찰할 수 있다.갯벌로 떠나기 전에는 조수간만 차에 대한 정보 및 기후 조건 정보를 잘 살펴봐야 한다. 밀물과 썰물의 시각은 매일 달라진다. 바닷물이 들어오는 속도는 매우 빠르므로 썰물 시각을 기준으로 2시간 전에 갯벌에 방문하는 게 적당하며, 썰물 시간일 때는 뭍으로 돌아오기 시작해야 한다. 또 조수간만의 차이가 가장 큰 ‘

  • 과학과 놀자

    아삭한 채소를 개발한 한국 대표 농학자 우장춘

    국립중앙과학관과 함께하는 과학 이야기 (12)한국을 대표하는 전통 음식 김치는 배추와 무 등 신선한 채소가 있어야 제맛을 낼 수 있다. 아삭아삭하게 씹히는 배추와 무의 식감이 김치 맛을 더해 준다. 그런데 우리가 먹는 배추와 무가 원래부터 그렇게 아삭아삭했던 것은 아니다. 그런 배추와 무를 개발해 보급한 사람은 한국을 대표하는 농학자 우장춘(1898~1959)이다.우장춘 이전에 과학자들은 생물 종의 탄생을 진화론으로 설명했다. 19세기 영국 생물학자 찰스 다윈은 <종의 기원>에서 생존에 유리한 변이(생물 개체가 가진 특성)가 자연 선택에 의해 살아남으면서 새로운 종으로 진화한다고 봤다. 나무가 새 가지를 치며 자라듯이 생물 종도 기존 종에서 새로운 종이 갈라져 나오면서 다양해진다는 것이다.그러나 우장춘은 종의 분화만으로는 생물 종의 탄생을 설명할 수 없다고 생각했다. 그는 종이 달라도 같은 속(屬)에 들어가는 식물을 교배하면 새로운 종을 만들어 낼 수 있다고 봤다. 우장춘은 이를 증명하기 위해 종은 다르지만 같은 속인 배추와 양배추를 교배해 제3의 식물인 서양 유채를 만들고, 염색체 분석을 통해 이들 사이의 세포학적 관계를 밝혀냈다. 즉, 유채가 배추와 양배추의 자연적인 잡종 결과 탄생한 새로운 종이라는 사실을 밝혀낸 것이다.이처럼 서로 다른 종이 합쳐져 새로운 종이 되는 것을 '종의 합성'이라고 한다. 우장춘은 1936년 도쿄제국대학 농학박사 학위 논문인 '배추 속(屬) 식물에 관한 게놈 분석'에서 이 같은 이론을 세계 최초로 제시했다. 이 이론은 같은 종끼리만 교배가 가능하다고 본 당시의 패러다임을 깨뜨린 것이었다.종의 합성은 두 식물을 교배해 세

  • 과학과 놀자

    액체상태 거치지 않는 '마른 얼음'…산업현장 세척에도 활용

    더운 여름, 얼음과 함께 차가움의 대명사로 불리는 것이 있다. 하얗고 차가우며 물에 넣으면 흰 연기를 퐁퐁 내며 사라지는 드라이아이스. ‘마른 얼음’이라는 이름은 드라이아이스의 성질에 대해 중요한 정보를 제공해준다.얼음이 녹아 액체인 물로 변하고 그로 인해 주변이 젖는 데 비해 드라이아이스는 젖지 않는다는 것이다. 고체에서 액체를 거치지 않고 바로 기체로 날아가는 승화성을 지니고 있기 때문이다. 고체가 기체로 날아가거나 반대로 기체에서 고체로 변하는 승화는 일상생활에서 흔히 나타나는 현상은 아니다.아이스크림이나 냉동식품같이 언 상태로 판매되는 제품을 구입하면 대개 드라이아이스가 들어 있다. 얼음팩이나 젤 냉각팩보다 온도를 낮추는 효과가 크기 때문이다. 드라이아이스의 온도는 영하 78.5도로 일상생활에서 접할 수 있는 물질 중 가장 차갑다. 자체 온도가 낮은 데다 기체로 승화하면서 승화열을 흡수하는 냉각 효과도 더해지기 때문에 탁월한 냉각제가 된다. 이런 드라이아이스는 언제, 어떻게 발견돼 사용되기 시작한 걸까?1835년 프랑스의 과학자 샤를 틸로리에는 금속 탱크에서 액체 이산화탄소가 배출될 때 눈 같은 흰 물질이 생기는 것을 관찰했다. 이를 얼음이라고 생각한 틸로리에는 흰 물질이 녹지 않고 사라지는 것을 보고 어리둥절했는데, 동료 과학자들 덕분에 자신이 최초로 드라이아이스를 만들었다는 걸 알게 됐다. 액체 상태로 배출된 이산화탄소가 기체로 변하면서 열을 흡수해 급격하게 온도가 떨어져 고체가 된 것이다. 이 실험은 지금도 해볼 수 있다. 1회용 플라스틱 스포이트를 자른 뒤 곱게 간 드라이아이스 가루를 넣고 입구를 막아두면 드

  • 과학과 놀자

    뜨거운 물과 차가운 물, 어느 쪽이 더 빨리 얼까?

     국립중앙과학관과 함께하는 과학 이야기 (11)더운 여름날 물이나 음료수에 얼음을 띄워 마시면 정말 시원하죠? 만약 얼음이 없다면 여름을 나기가 훨씬 더 힘들 거예요. 얼음 틀에 물을 가득 담아 냉동실에 넣어 두면 시원한 얼음을 만들 수 있죠.얼음과 물은 똑같이 수소 원자 2개와 산소 원자 1개로 이뤄진 분자들로 구성돼 있습니다. 냉동실처럼 주변 온도가 차가운 곳에서는 이 분자들이 모여 육각형 모양의 구조를 만들고, 이것이 결정을 이뤄 단단한 얼음이 만들어집니다.반대로 따뜻한 곳에서는 이 구조가 약해지면서 얼음이 흐물흐물 녹아 버려 물로 바뀌지요. 온도가 낮은 환경에서는 물 분자들이 주변에 열에너지를 빼앗기면서 안정된 구조를 만들게 되는 반면, 온도가 높은 환경에서는 주변으로부터 열에너지를 흡수한 분자들이 안정된 구조를 벗어나 활발히 운동하기 때문입니다.여기서 퀴즈를 하나 내 볼게요. 차가운 물과 따뜻한 물을 동시에 냉동실에 넣으면 어느 쪽이 더 빨리 얼음이 될까요? 언뜻 생각하기엔 차가운 물이 빨리 얼 것 같죠. 얼음이 차가운 성질을 지녔으니까요. 하지만 실제로는 따뜻한 물이 차가운 물보다 빨리 언답니다.1963년 탄자니아에 에라스토 음펨바라는 학생이 있었어요. 이 학생은 학교 수업 시간에 아이스크림을 만들던 중 따뜻한 우유와 설탕을 

  • 과학과 놀자

    힘의 상호작용 속에서 입자에 의해 결정되는 우주

    얼마 전 《사라진 중성미자를 찾아서》라는 책을 쓴 박인규 교수의 대중 강연을 들을 기회가 있었다. 유령 입자의 탄생에서 약력의 발견, 태양의 수수께끼, 정체를 바꾸는 입자, 중성미자에 대한 이야기였다. 강연을 들으며 우주를 이루고 있는 물질의 신기한 세계에 대한 호기심이 향수처럼 일어났다.중성미자 이야기를 시작하려면 물질을 구성하는 입자들에 대해 알아볼 필요가 있다. 대부분의 사람은 물질을 구성하는 기본 입자는 원자라고 답할 것이다. 실제로 원자의 어원도 그리스어로 ‘나눌 수 없는’이라는 뜻의 아토모스(atomos)에서 유래했다. 하지만 원자는 핵과 전자로 이뤄져 있고 다시 핵은 양성자와 중성자로 구성돼 있다.여기서 의문이 생긴다. 전자는 음전하(-)를 띠고, 양성자는 양전하(+)를 띠므로 둘 사이에는 인력이 작용해 핵 주위에 전자가 운동하고 있는 것은 지구가 중력에 의해 태양 주변을 돌고 있는 것과 비슷하게 이해할 수 있다. 그런데 같은 전하를 띤 양성자끼리 어떻게 핵에 단단하게 뭉쳐 있을 수 있을까. 흔히 원자의 구조를 이야기할 때 원자를 야구장 크기로 비유하면 핵은 야구공 크기 정도라고 표현한다. 수치로 표현하면 10만 분의 1 정도다. 그리고 이 핵에 원자 대부분의 질량이 모여 있다. 그렇다면 질량이 있는 물체 사이에 상호작용하는 중력이 전하를 띤 물체 사이에 작용하는 힘인 전기력보다 더 커서 그런 것일까. 계산해보면 두 양성자 사이에 작용하는 중력의 크기는 전기력의 크기보다 대략 1/10<윗첨자>36배다. 비교도 할 수 없이 약한 것이다.그렇다면 어떻게 핵이 만들어졌을까. 여기서 또 다른 힘의 존재를 유추할 수 있다. 그 정체는 바로 강력(강한

  • 과학과 놀자

    세계인이 사랑하는 한국 농기구, 호미에 담긴 과학

     국립중앙과학관과 함께하는 과학 이야기 (10)세계 최대 인터넷 쇼핑몰 아마존에서 인기를 끈 한국 농기구가 있다. 우리 농촌에서 흔히 볼 수 있는 호미다. 국토가 넓은 미국은 원래 대량 재배에 최적화된 농기구가 많았다. 그런데 코로나 등의 영향으로 집 근처 텃밭이나 정원을 가꾸는 취미가 유행하면서 잡초 뽑기, 씨앗 심기 등 소규모 재배에 사용할 수 있는 호미가 각광받기 시작한 것이다.호미는 한반도에서 고대부터 사용하던 농기구다. 석기 시대 유물 중에서도 호미와 비슷한 모양의 도구가 있고, 고려속요 등 문학 작품에도 호미가 등장한다. 우리나라에선 지역에 따라 다양한 형태의 호미가 발달했다. 호미를 써 본 서양인들은 ‘편리하고 튼튼하다’며 찬사를 아끼지 않고 있다.호미가 편리하게 느껴지는 것은 그 안에 과학 원리가 숨어 있기 때문이다. 호미의 날은 ‘ㄱ’자로 꺾인 예각을 이루고 있다. 덕분에 호미 날이 바닥에 닿을 때 마찰력이 줄어들어 작은 힘으로도 흙을 깊게 파고 들어갈 수 있다. 또 흙을 파거나 잡초 뿌리를 제거할 때 지렛대 원리를 활용해 최소한의 힘으로 작업할 수 있다. 서양엔 작은 모종삽은 있지만, 호미처럼 날이 꺾인 모양의 농기구는 없었다고 

  • 과학과 놀자

    고흐 그림 '해바라기'가 갈색으로 변하는 이유

    암스테르담 반 고흐 미술관에 전시된 빈센트 반 고흐(1853~1890)의 1889년작 ‘해바라기’가 노란색에서 갈색으로 변하고 있다는 말을 들어본 적 있는가? 2018년 5월 영국의 일간지 가디언에 보도된 내용에 따르면 과학자들이 엑스레이 장비를 이용, ‘해바라기’를 수년간 관찰해 그림 속 노란색 꽃잎과 줄기가 올리브 갈색으로 변하고 있는 것을 확인했다고 한다.변색 원인은 고흐가 밝은 노란색을 표현하기 위해 크롬 옐로와 황산염의 흰색을 섞어 사용했기 때문이라고 추정했다. 크롬 옐로는 납을 질산 또는 아세트산에 용해하고, 중크롬산나트륨 수용액을 넣으면 노랗게 침전돼 만들어진다. 크롬 옐로에 포함된 납 성분은 대기에 포함된 황과 만나면 황화납이 되는데, 이것이 검은색이어서 고흐의 그림도 서서히 변하고 있는 것으로 추정된다. 또 오랜 시간 빛에 노출되면 그 반응이 촉진된다.당장 육안으로는 변색 부분이 잘 보이지 않지만, 시간이 지날수록 눈에 띄는 변화가 생겨 해바라기가 검은색으로 변할지도 모른다. 다행히 노란색 배경 부분은 빛에 덜 민감한 물감으로 칠해져 있어 해바라기 부분보다 변색 가능성은 작을 것으로 예상됐다. 이에 미술관에서는 전시장 조도를 낮춰 빛에 의한 변색을 최소화하려고 노력하고 있다.고흐의 ‘해바라기’ 사례처럼 예술품은 적절한 보존 처리와 보존 환경에서 보관해야 작품 손상을 막고 수명을 최대한 늘릴 수 있다. 회화 작품, 도서 같은 종이로 된 작품이나 목재로 된 작품은 온도, 습도에 따라 쉽게 손상되며 강한 빛에 의해 물감이 변색되기 쉽다. 또한 돌이나 금속으로 만든 예술품은 공기 중 산소와 반응해 산화되면 부식되거나 온도

  • 과학과 놀자

    과학과 예술의 결합, 한 폭의 그림 같은 미세 과학의 세계

    국립중앙과학관과 함께하는 과학 이야기 (9)과학은 객관적인 사실을 발견하고 보편타당한 원리를 찾아내는 학문 분야다. 반면 예술은 아름다움을 표현하는 활동으로, 주관적이고 모호하다. 이처럼 과학과 예술은 서로 반대되는 성격을 지녔지만, 상호 보완적인 역할을 하기도 한다. 과학사를 돌아보면 예술적 상상력이 과학적 발견을 자극했고, 과학 지식이 예술에 적용돼 더욱 다양한 작품을 탄생시켰다.오늘날에는 과학과 예술의 융합이 더욱 빈번하게 일어나고 있다. 눈으로 볼 수 없는, 현미경으로만 관찰할 수 있는 세계를 연구하는 과학 분야를 ‘미세 과학’이라고 한다. 미세 과학은 때때로 예술의 소재가 되기도 한다. 생명 활동을 형광 현미경으로 촬영해 마치 한 폭의 그림처럼 펼쳐 보이는 것이다. 생물의 세포와 세균 등은 자외선이나 가시광선을 받았을 때 빛을 내는 ‘형광 현상’을 일으키는데, 형광 현미경을 활용하면 이런 현상을 관찰할 수 있다.그림은 태어난 지 5일 된 생쥐의 망막 혈관이 성장하며 뻗어 나가는 과정을 촬영한 것이다. 초록색 빛을 내는 망막 혈관과 붉은색 빛을 내는 혈관 주위 세포가 뒤섞인 모습이 물감을 칠해 놓은 것처럼 보인다. 생물의 세포, 동식물의 성장 과정, 꽃가루의 표면 등을 이와 비슷한 방식으로 표현할 수 있다. 형광 현미경이 포착한 장면은 생명을 더욱 신비롭게 느껴지게 한다.과학 기술의 변화는 예술의 성격도 바꾸고 있다. 디지털 기술의 발달로 예술도 현실 세계에만 머무르지 않는다. 물리적 세계와 가상의 세계를 넘나드는 콘텐츠가 등장하고 있다. 메타버스 등 가상 현실 기술이 발달하면서 이런 현상은 속도가 더욱 빨라질 것이다.