본문 바로가기
  • 과학과 놀자

    유성생식은 유전적 다양성 확보로 생존확률 높여

    1859년, 다윈은 <종의 기원>을 발간해 '자연선택'을 세상에 소개하며 유럽 사회에 엄청난 충격을 줬다. 인간이 침팬지와 비슷한 영장류 조상으로부터 진화했다는 그의 주장은 당시 유럽 사회의 세계관과 윤리관을 뒤엎는 것이었다.다윈의 자연선택론은 동물 중 어떤 개체는 살아남아 자신의 유전자를 대물림하고, 어떤 개체는 자손을 남기지 못하고 죽는지에 대해 비교적 설득력 있는 설명을 제공한다. 예를 들어 대부분의 새는 암컷이 수컷에 비해 우중충한 색을 갖는데, 이는 암컷이 알을 품고 있는 동안 포식동물의 눈에 잘 띄지 않아 생존율이 높아진 ‘자연선택’의 결과 때문이고, 가젤 영양의 몸이 천적보다 빨리 달릴 수 있도록 발달한 것도 ‘자연선택’의 결과라고 제시했다.다윈은 <종의 기원>을 발간한 지 12년이 되는 1871년에 <인간의 유래와 성선택>이라는 책을 발간해 유럽 사회에 더 큰 파장을 일으켰다. 다윈은 자신의 기존 이론인 ‘자연선택론’에 반하는 것처럼 보이는 특성 즉, 공작 수컷의 화려한 꼬리 깃털이나 엘크 수컷의 무겁고 거대한 뿔처럼 생존에 불리한 특성이 어떻게 발달했는지 스스로 의문을 제기했다. 여기서 다윈은 같은 종 내에서 일어나는 짝짓기 행동과 짝 고르기라는 번식 경쟁을 끌어들여 ‘성선택 이론’이라는 새로운 개념을 도입했다. 공작새 수컷의 꼬리나 엘크 수컷의 거대한 뿔은 성선택 과정에서 생긴 자연스러운 결과라는 것이다. 다윈은 생존을 위한 자연선택과 번식을 위한 성선택을 구분한 뒤, 성선택은 자연선택보다 훨씬 더 지능적인 과정이라고 설명했다.성의 존재는 생명의 진화에 어떤 이점이 있는 것일까.모

  • 과학과 놀자

    군고구마 맛과 향은 아미노산과 당의 합작품

    군고구마, 붕어빵, 호떡…. 겨울철 길거리에서 만날 수 있는 맛있는 간식이다. 이들 앞을 지나갈 때면 달콤하고도 구수한 냄새가 코끝을 스친다. 이 맛있는 냄새는 어떤 물질일까? 바로 '마이야르 반응'에 의해 만들어진 화합물이다.마이야르 반응은 1912년 프랑스 과학자 루이 카미유 마이야르에 의해 보고된 아미노산과 환원당의 화학 반응이다. 환원당은 알데하이드나 케톤 작용기를 갖는 당으로 반응성이 크다. 마이야르는 당시 아미노산으로 단백질을 형성하는 과정을 연구 중이었는데, 아미노산에 포도당과 같은 당을 반응시키면 갈색 물질이 형성되는 것을 알게 됐다. 이때 생긴 갈색 물질은 다양한 맛과 향을 내는데, 군고구마나 군밤의 표면에 형성된 맛있는 갈색 부분이 바로 마이야르 반응으로 인해 만들어진 화합물이다.밀가루 반죽을 가열하면 반죽에 들어 있는 아미노산의 아미노기(-NH2)와 환원당의 카보닐기(-(C=O)-)가 결합해 여러 단계를 거치며 갈색 물질의 ‘멜라노이딘’을 형성한다. 아미노산과 환원당이 결합할 때 아미노산과 환원당(포도당, 엿당, 젖당 등)의 종류에 따라 다양한 생성물이 생기는데, 이를 총칭해 멜라노이딘이라 부른다. 예를 들어 아미노산 중 류신과 당이 결합하면 초콜릿 향을 내는 멜라노이딘을 형성하며, 아르지닌과 당이 결합하면 팝콘 냄새를 풍기는 멜라노이딘을 만든다.마이야르 반응은 고기를 불에 구울 때도 일어난다. 삼겹살을 구우면 고기 속 아미노산과 당이 결합하는 마이야르 반응에 의해 표면이 갈색으로 변하고 맛있는 냄새가 난다. 인류는 아주 오랜 기간 마이야르 반응으로 생성된 멜라노이딘을 먹었다. 빵을 구울 때 나는 빵 냄새나 노

  • 과학과 놀자

    지구를 지키기 위한 노력, 탄소 중립

    신나는 과학을 만드는 선생님들의 과학 이야기 (10)탄소 중립이라는 말을 들어 본 적 있나요? 여기서 탄소는 이산화탄소를 뜻합니다. 우리가 숨을 ‘후~’ 하고 내쉴 때 나오는 기체입니다. 탄소 중립이란 이산화탄소의 총 배출량이 늘어나지 않도록 하는 것을 말합니다. 숲을 조성해 이산화탄소를 흡수하고, 탄소를 배출하지 않는 무공해 에너지를 개발하는 등의 노력이 필요합니다.이산화탄소는 식물의 광합성을 비롯해 지구상에서 생물이 살아가는 데 꼭 필요한 기체입니다. 하지만 이산화탄소가 너무 많으면 문제가 생길 수 있습니다. 그것은 이산화탄소가 일으키는 온실 효과 때문입니다.비닐하우스는 외부 환경에 상관없이 내부 온도를 일정하게 유지할 수 있습니다. 지구도 마찬가지로 지구를 둘러싸고 있는 공기 때문에 온도를 어느 정도 일정하게 유지합니다. 특히 이산화탄소는 지표면에서 반사되는 에너지를 흡수하는 성질이 있어 온실 효과를 일으킵니다.그래서 대기 중에 이산화탄소가 많아지면 지구에서 반사된 에너지가 대기권을 빠져나가지 못해 지구의 온도가 올라가게 돼요. 온실의 유리가 열이 빠져나가는 것을 막아 내부 온도를 높이는 것처럼 이산화탄소가 열 배출을 막아 지구 온도를 높이는 것이죠.지구가 뜨거워지면 어떤 일이 발생할까요. 과학자들은 지구 평균 기온이 2℃ 상승하면 적도 지역에서는 사람이 살 수 없게 될 것이라고 예상하고 있어요. 또 태풍, 폭염 등 자연재해가 더 자주 일어날 것이라고 해요. 이와 같은 전 지구적인 재난을 막기 위해 세계 각국이 그린 뉴딜이라는 이름으로 추진하고 있는 것이 탄소 중립입니다.탄소 중립은 단기간에는 달성하기 어

  • 과학과 놀자

    우주공간 전자기 성질 따라 빛의 속도 변화

    어떤 물체가 전기적 성질을 띨 때 우리는 보통 “정전기를 띤다”고 말한다. 과학에선 정전기라는 표현보다 전하(Charge)라는 말을 더 자주 사용한다. 금속이 아닌 얇은 물체의 양면에 금속판을 밀착시켜 놓고 두 금속판에 직류 전원을 연결해 양전하(+)와 음전하(-)가 각각 모이면 양전하를 띤 금속판에서 음전하를 띤 금속판 방향으로 얇은 물체 내부에 전기장이 생긴다.이 전기장의 세기는 사용한 물질의 종류에 따라 다른데, 어느 물질이 얼마나 전기장을 잘 형성하는지 비교할 수 있도록 나타낸 값으로 ‘물질의 유전율’이라는 실험값이 있다. 물질을 구성하는 입자들은 대개 외부 전기장이 상쇄되는 방향으로 조금씩 이동하기 때문에 두 금속판 사이의 유전율은 진공인 때가 가장 크다. 진공의 유전율은 약 8.85×10-12 C2/Nm2이다. 진공에 유전율 값이 있다는 것은 아무것도 없는 공간에 전기적 성질은 있다는 것을 의미한다.유전율을 측정하는 실험과 달리 원기둥 모양의 물체를 마련해 주위에 구리 선을 칭칭 감은 뒤 구리 선에 전류를 흐르게 하면 물체 내부에 자기장이 생긴다. 외부의 자기장이 공급되면 물체를 구성하는 자성을 띤 입자들이 약간씩 이동해 물체 내부의 자기장이 조금 변한다. 어느 물질이 얼마나 자기장을 잘 형성하는지 비교할 수 있도록 나타낸 값으로 ‘물질의 투자율’이라 부르는 실험값이 있다. 물체를 이루는 물질의 종류가 외부 자기장에 대해 순종적이냐 아니면 반항적이냐에 따라 물질의 투자율은 진공의 투자율보다 크거나 작다. 진공의 투자율은 4π×10-7 Ns2/C2이다. 진공에 투자율 값이 있다는 것은 아무것도 없는 공간이 자기적 성질을 가지고 있다는

  • 과학과 놀자

    곤충을 잡아먹는 무서운 식물 이야기

    신나는 과학을 만드는 선생님들의 과학 이야기 (9)곤충을 잡아먹고 사는 식물이 있습니다. ‘식충 식물’이라고 하는데요. 파리지옥, 끈끈이주걱, 네펜데스, 사라세니아, 벌레잡이제비꽃 등 지금까지 알려진 식충 식물만 750여 가지예요. 우리나라에도 끈끈이주걱, 통발 등 14종이 살고 있어요.식충 식물은 왜 곤충 사냥꾼이 됐을까요? 이들은 대부분 황무지, 습지, 고산 지대처럼 거친 환경에서 살아요. 식물 생장에 꼭 필요한 영양분을 얻기 어려운 곳이죠. 부족한 영양분을 보충하기 위해 식충 식물이 선택한 생존 전략이 바로 곤충 사냥입니다. 식충 식물은 곤충을 유인하고 사냥하기 위해 저마다 특이한 형태의 포충엽(벌레를 잡아 소화하는 잎)을 발달시켰으며, 다양한 사냥 전략을 갖고 있습니다.파리지옥의 잎은 마치 두 손바닥을 모아서 벌리고 있는 것처럼 생겼어요. 향기를 풍겨서 곤충을 유혹하죠. 잎 양쪽에 각각 3개씩 아주 예민한 감각모가 있어요. 곤충이 날아와 이 감각모를 건드리면 파리지옥의 잎이 빠르게 닫히면서 곤충을 가둬요. 이후 소화 효소가 나와 1~2주에 걸쳐 천천히 곤충을 소화시킵니다.끈끈이주걱의 잎은 짧고 가느다란 붉은색 털로 덮여 있어요. 이 털에서는 끈적끈적한 액체와 함께 달콤한 향기가 흘러나와요. 향기를 맡고 날아온 곤충은 끈끈이주걱의 끈적끈적한 액체에 닿는 순간 날개와 다리가 달라붙어 옴짝달싹 못합니다. 그러면 끈끈이주걱은 소화 효소를 분비해 곤충으로부터 영양분을 흡수하죠.네펜데스라는 식물은 포충낭(곤충을 잡는 주머니)이라고 하는 기다란 주머니를 갖고 있어요. 이 주머니 입구에는 곤충이 좋아하는 꿀과 영양분이 잔뜩 묻어 있어요. 곤충

  • 과학과 놀자

    PCR은 질병진단·과학수사·유전자연구 등에 쓰여

    신종 코로나바이러스 감염증(코로나19)으로 인한 팬데믹 시대에 살고 있는 학생과 교사들은 매일 코로나19 진단 방법의 종류를 접하고 있다. 무엇인지 잘 생각나지 않는다면, 지금 바로 '건강상태 자가진단' 앱을 열어보자.1. 학생 본인이 코로나19 감염에 의심되는 아래의 임상증상이 있나요?2. 학생 본인은 오늘(어제저녁 포함) 신속항원검사(자가진단)를 실시했나요?3. 학생 본인이 PCR 등 검사를 받고 그 결과를 기다리고 있나요?위의 질문에서 코로나19의 진단 방법을 찾았는가? 그렇다! 2번 항목의 ‘신속항원검사’와 3번 항목의 ‘PCR 검사’가 코로나19의 진단 방법이다! 신속항원검사와 PCR이 무엇인지 살펴보자.신속항원검사는 채취한 검체에 바이러스 특이 항원이 있는지를 검출하는 방법이다. 신속항원검사 중 면역 크로마토그래피 분석법을 이용하는데, 이는 항원-항체 면역반응과 크로마토그래피 원리를 결합한 기술이다. 일회용 키트로 개발돼 집에서도 자가진단을 할 수 있다. 검체를 희석한 용액을 진단 키트에 떨어뜨리면 모세관 현상에 의해 반대편으로 흘러간다. 이때 검체에 있는 항원(코로나바이러스)은 라벨이 부착된 항체 그리고 Test(T)라인과 Control(C)라인에 있던 항체와 결합한다. T라인과 C라인에 모두 선이 보인다면 양성이다.PCR(Polymerase Chain Reaction, 중합효소 연쇄 반응)은 DNA의 특정 염기서열을 복제해 증폭시키는 기술이다. PCR의 사이클(cycle)은 세 단계로 이뤄진다.첫 번째는 DNA 변성 단계(Denaturation)로 94~96도로 가열해 이중 나선인 DNA를 단일가닥으로 분리한다.두 번째는 프라이머(DNA 합성 시 출발점 역할을 하는 짧은 단일 가닥 조각) 결합 단계(Annealing)로, 온도를 50~65도

  • 과학과 놀자

    세상의 근원, 더이상 쪼갤 수 없는 작은 알갱이 '원소'

    신나는 과학을 만드는 선생님들의 과학 이야기 (8)지금 여러분이 보고 있는 컴퓨터 모니터나 스마트폰 액정을 잘게 부수면 어떻게 될까요? 부서진 액정을 더 잘게 가루로 만들면 무엇이 남을까요? 상상하기 어렵지만 궁금하지 않나요? 마지막에 남는 아주 작은 알갱이가 스마트폰 액정을 구성하는 가장 기본적인 요소겠죠.물질을 이루는 근원적인 요소가 무엇일까 하는 질문은 아주 오랜 옛날부터 있었습니다. 고대 그리스에선 물, 불, 흙, 공기가 세상의 근원이라고 생각했어요. 이 네 가지가 섞여서 여러 가지 물질을 만들어 낸다고 믿었죠. 물론 이것은 사실이 아닙니다.이후 과학자들이 연구를 거듭해 물질의 기초가 되는 요소들을 찾아냈어요. 이를 ‘원소’라고 해요. 더 이상 쪼갤 수 없는 근원적인 요소라는 뜻이에요. 지금까지 과학자들이 찾아낸 원소는 총 118개입니다. 이 중 약 90개는 자연적으로 존재하는 것이고, 나머지는 인공적으로 합성한 것입니다. 우리 생활에 쓰이는 철, 구리, 알루미늄과 공기 중에 있는 산소도 원소예요.이 모든 원소를 기록한 것이 우리가 학교에서 배우는 주기율표입니다. 서로 비슷한 성질을 지닌 원소들을 같은 세로줄에 배치했기 때문에 '주기'가 있다고 하는 것입니다. 지금은 100개가 넘는 원소가 알려져 있지만, 3

  • 과학과 놀자

    러시아의 화학자 드미트리 멘델레예프…원소를 원자량 순서로 배열해 주기율표 창안

    과학은 크게 물리학, 화학, 생명과학, 지구과학으로 나뉜다. 만물의 작동 원리를 다루는 물리학, 물질의 변화를 다루는 화학, 생명체의 특성을 다루는 생명과학, 대기 해양 별 등 자연 현상을 다루는 지구과학. 이처럼 대상이 다르다 보니, 각 과목을 대표하는 이미지도 다르다. 물리학이 F=ma 같은 식으로 대표된다면, 생명과학은 DNA의 이중나선, 지구과학은 별이나 지질 사진으로 대표될 것이다.그렇다면 화학의 대표적 이미지는 뭘까. 아마도 주기율표일 것이다. 가로줄 18개와 세로줄 7개로 구성된 주기율표는 언제, 어떻게 만들어졌을까.주기율표를 처음 만든 과학자는 러시아에서 태어난 드미트리 멘델레예프(사진)로, 대학에서 학생을 가르치다가 60여 종의 원소를 하나하나 알려주는 데 회의를 느끼고 비슷한 성질을 지니는 원소끼리 분류하던 중 영감을 얻었다고 전해진다. 그는 원소를 원자량 순서로 배열했을 때 비슷한 성질을 지니는 원소들이 일정한 주기를 두고 나타나는 현상을 발견하고 주기율표를 창안했다. 당시 발견돼 있던 60여 종의 원소만으로 만들었던 그의 주기율표는 현대 주기율표와는 형태가 다르지만, 원소들의 집을 처음으로 지었다는 점에서 주기율의 아버지로 불리기에 충분하다. 이후 주기율표는 모즐리 등 후배 과학자들에 의해 업그레이드돼 오늘날 우리가 흔하게 보는 형태로 진화했다.멘델레예프는 주기율표를 만들면서 이후 추가로 발견될 원소를 예견하고 표에 빈자리를 남겨뒀다. 주기적인 성질을 고려했을 때 반드시 있어야 할 원소의 존재를 예언하고 그 원소의 물리적, 화학적 성질까지 적어뒀던 걸 보면 자신의 발견이 가진 의미를 정확하게 알았던 자신감이 느껴진다