-
과학과 놀자
개구리 다리에서 시작된 건전지 발명
신나는 과학을 만드는 선생님들의 과학 이야기 (4)전기는 우리 생활에 반드시 필요한 것 중 하나입니다. 여러분이 지금 이 기사를 보고 있는 컴퓨터 혹은 스마트폰도 전기를 사용합니다. 전기는 눈에 보이지 않고, 감전 등 사고가 날 위험도 있어 두려움의 대상이 되기도 합니다. 눈에 보이지 않는 전기를 우리는 어떻게 사용할 수 있는 것일까요. 오늘은 최초의 화학 전지인 볼타 전지에 대해서 얘기해 보겠습니다.우리가 집에서 사용하는 TV 리모컨과 도어록에는 건전지가 필요합니다. 휴대폰에는 배터리가 들어 있죠. 건전지와 배터리 등을 전지라고 합니다. 만약 전지가 없다면 모든 전자제품에 전깃줄이 필요해 사용하기가 훨씬 불편할 거예요. 전지 덕분에 각종 전자제품을 더 편리하게 쓸 수 있습니다.전지는 200여 년 전 처음 발명됐는데요. 아주 우연한 발견에서 전지의 역사가 시작됐습니다. 1700년대 후반 이탈리아의 해부학자 루이지 갈바니는 죽은 개구리 다리에 수술용 칼을 대자 다리가 움찔하며 움직이는 현상을 발견했습니다. 갈바니는 개구리의 몸에서 전기가 나온다고 생각했어요.하지만 이 소식을 전해 들은 갈바니의 친구 알레산드로 볼타는 다르게 생각했어요. 개구리를 올려놓은 금속판과 수술용 칼 사이에 전기가 통한 것이라고 봤죠. 다시 말해 개구리의 몸속에 전기가 있는 것이 아니라 서로 다른 종류의 두 금속 사이에 전기가 통하면서 중간에 껴 있던 개구리 다리가 움직인 것이라는 얘기입니다.훗날 실험을 통해 볼타의 생각이 옳은 것으로 증명됐어요. 볼타는 1800년경 앞서 설명한 개구리 다리가 서로 다른 두 개의 금속 사이에서 움직이는 현상에 착안해 전지를 만들었는데요. 그는
-
과학과 놀자
데이터 분석해보면 일어날 일 예측할 수 있어
아날로그 온도계 2개로 동시에 온도를 측정해보면 온도계 사이에 미세한 눈금 차이가 존재함을 알 수 있다. 온도계를 아무리 잘 만들어도 소수점 이하의 모든 자릿수까지 일치하는 값을 나타낼 순 없다. 디지털 온도계는 차이가 생기기 시작하는 자릿수 이하의 값을 아예 표시하지 않거나 0으로 표시한다.따라서 여러 개의 디지털 온도계가 모두 37.5℃를 가리키더라도 엄밀히 말해 다 같은 온도는 아니다. 따라서 측정 기계가 가진 한계를 넘어 보다 정밀한 값을 알고 싶다면 여러 번 측정해 얻은 값이나 여러 측정기가 동시에 측정한 값을 논리적으로 분석하는 과정이 필요하다. 사람의 눈으로 직접 관찰하는 경우에도 비슷한 문제가 있기는 매한가지다. 특정 종류의 새가 언제 알을 낳는지는 한 마리를 관찰했다고 자신있게 말할 수 있는 것이 아니다. 그렇다고 모든 새를 관찰하는 것도 현실적으로 불가능하다. 따라서 사람의 감각기관으로 직접 관찰하는 경우에도 여러 개의 관찰 결과로 전체 양상을 추정하는 과정이 필요하다.이미 측정한 몇 개의 데이터로 아직 측정하지 않은 경우의 데이터를 예측하는 데는 확률이 사용된다. 대기권 밖의 단면적 A인 측정장치가 우주 먼 곳에서 폭발한 항성에서 방출된 입자 n개를 검출했다고 하자. 지구 반지름을 R이라고 할 때 지구의 전체 단면적 πR²에 동일한 확률로 입자가 도착할 것이라는 가정하에 지구 전체에 입사된 입자의 개수 N을 계산할 수 있다. 비례식에 의하면 n:N=A: πR²이므로 N=n(πR²/A)이다. 이같이 관찰하지 않은 값을 추정하기 위해 일정 범위 내에서 확률이 일정하다고 가정하는 것을 확률의 균등분포라고 한다. 확률의 균등분포를 사용
-
과학과 놀자
누리호 발사 순간 피어오른 흰 연기의 정체는?
신나는 과학을 만드는 사람들의 과학 이야기 (3)2022년 6월 21일은 우리나라 우주 개발사에 기념비적인 하루였다. 한국형 발사체 누리호 발사에 성공한 것이다. 이로써 한국은 세계에서 11번째로 발사체를 우주 궤도에 올린 나라이자 무게 1t 이상 실용 위성을 일곱 번째로 쏘아 올린 나라가 됐다. 작년 10월 첫 번째 발사 시도가 실패하고, 2차 발사도 날씨 때문에 한 번 연기되는 곡절 끝에 이룬 성과다.누리호 발사를 지켜본 사람이라면 한 가지 신기한 현상에 의문을 품었을 법하다. 발사 순간 누리호 몸체에서 흰색 가루가 후드득 떨어지고, 주변에는 구름 같은 흰 연기가 피어올랐다. 이 흰 가루와 연기는 무엇이었을까. 정답부터 말하자면 흰 가루는 얼음이고, 흰 연기는 수증기다.누리호의 엔진이 작동하려면 연료가 산소와 결합해야 한다. 그런데 누리호는 대기 중에 있는 산소로 연료를 태울 수 없는 구조다. 따라서 연료와 산소를 누리호에 함께 실어야 했다. 이때 산소의 부피를 줄이기 위해 영하 183℃의 액체 형태로 산소를 싣게 된다. 이로 인해 누리호 몸체의 외부까지 차가워져 주변 공기 중에 있던 수증기가 누리호에 달라붙으면서 성에가 낀
-
과학과 놀자
우주망원경으로 텅빈 공간에서 수많은 은하 발견
지난 7월 12일, 미국 항공우주국(NASA) TV는 제임스 웹 우주망원경의 첫 관측 결과를 실시간으로 공개했다. 모두 다섯 가지의 고해상도 이미지와 분광 스펙트럼이며, 그중 공식 발표가 있기 하루 전에 조 바이든 미국 대통령에 의해 공개된 SMACS 0723 은하단 이미지에는 ‘제임스 웹의 첫 번째 딥 필드(Webb’s First Deep field)’라는 이름이 붙었다.딥 필드 이미지는 허블 우주망원경으로부터 시작됐다. 1995년 로버트 윌리엄슨 우주망원경과학연구소(STScI) 소장은 허블 우주망원경을 담당하고 있었다. 그런 그가 어느 날 아무것도 없는 것처럼 보이는 깜깜한 우주 공간을 찍어보자는 엉뚱한 제안을 한다. 이 제안을 들은 천문학자들은 모두 그가 미쳤다고 생각했다.당시 허블 우주망원경은 우주 비행사들이 현장에서 정비와 업그레이드를 해야 했고, 잦은 고장으로 수리에 들어가는 비용만 해도 천문학적이었기 때문에 여론이 좋지 않았다. 그런 상황에서 아무것도 보이지 않는 깜깜한 우주의 한 부분을 촬영하고자 각도를 미세하게 조정하고, 희미한 빛을 보기 위해 오랜 시간 촬영한다는 것은 도박이나 다를 바가 없었다. 만약 촬영에 소득이 없다면 가뜩이나 좋지 않은 여론에다 ‘눈에 보이는’ 관측 대상의 대기 리스트가 밀려 있는 상황에서 막대한 비용을 잡아먹게 될 것이라는 우려가 주를 이뤘다.하지만 허블의 첫 딥 필드 이미지인 ‘허블 딥 필드(Hubble Deep Field, HDF)’의 탄생은 천문학계에 큰 충격을 안겨준 사건이 됐다. 지구 궤도를 공전하는 허블 우주망원경은 1995년 크리스마스를 즈음해 약 열흘에 걸쳐 큰곰자리 주변의 매우 작은 한 영역(100m 떨어진 거리에서 바라본 테니스공 크기 정
-
과학과 놀자
밤하늘 우주쇼, 유성우의 정체는?
신나는 과학을 만드는 사람들의 과학 이야기 (2)지난 8월 12일 밤부터 13일 새벽까지, 그리고 13일 밤부터 14일 새벽까지 페르세우스 유성우가 지구에 떨어졌다. 아쉽게도 전국 대부분 지역이 흐리고 비가 왔지만, 이 시기는 1년 중 가장 화려한 유성우를 볼 수 있는 때다. 페르세우스 유성우는 사분의자리 유성우(1월), 쌍둥이자리 유성우(12월)와 함께 1년 중 볼 수 있는 3대 유성우로 꼽힌다. 유성우란 유성이 비 오듯 쏟아져 내리는 현상을 말한다. 유성우가 생기는 까닭은 무엇일까?우주 공간에는 지구와 같은 행성 외에도 수많은 물체가 떠돌아다닌다. 행성 주변을 떠도는 다양한 크기의 물체를 유성체라고 한다. 유성체는 대부분 혜성과 소행성에서 떨어져 나와 생긴다. 이런 유성체들이 지구 중력에 끌려 들어와 대기권을 통과하면 공기와 마찰을 일으키며 밝은 빛을 낸다. 이것을 유성 또는 별똥별이라고 한다. 유성은 특정 시기에 유독 많이 떨어지기도 하는데, 이를 유성우라고 한다.유성은 우리 눈에 하얗게 보이지만 실제 색은 다양하다. 사람의 눈으로는 여러 색깔을 구별해내지 못하지만, 카메라를 통해서는 다채로운 유성의 색을 확인할 수 있다. 유성의 색이 다른 이유는 무엇일까. 유성체가 빠른 속도로 낙하하면 대기와의 마찰로 고열이 발생한다. 이때 유성체 주변 대기의 온도도 함께 상승해 대기 성분이 이온화하면서 여러 색의 빛을 낸다.유성우는 매년 비슷한 시기에 발생한다. 그것은 지구가 1년에 한 바퀴씩 태양 주위를 공전하기 때문이다. 혜성과 소행성은 태양 주변을 지날 때 공전 궤도상에 많은 부스러기를 남기는데, 이 공간을 지구가 지나갈 때 그 부스러기들이 지구로 떨어져 유성우가
-
과학과 놀자
달 탐사선 다누리, 4개월 뒤 달에 도착하는 이유
신나는 과학을 만드는 사람들의 과학 이야기 (1)우리 독자 기술로 제작된 대한민국 첫 달 탐사선 다누리호가 지난 8월 5일 오전 발사에 성공했다. 이로써 한국은 달 탐사선을 띄운 세계 일곱 번째 나라가 됐다. 다누리는 앞으로 4개월 반에 걸쳐 우주여행을 한 뒤 달에 도착해 내년 1월부터 달 표면 탐사 등 본격적인 임무를 수행한다.다누리가 달에 도착하기까지 이렇게 긴 시간이 걸리는 것은 직선 경로가 아니라 탄도형 달 전이 방식(BLT·Ballistic Lunar Transfer)이라고 하는 우회 경로를 택했기 때문이다.다누리는 지구에서 바로 달을 향해 가지 않고 일단 태양 방향으로 간다. 지구에서 약 150만㎞ 떨어진 라그랑주 L1 지점이 1차 목적지다. 이 지점은 태양과 지구의 중력이 균형을 이뤄 무중력 상태가 되는 곳이다. 다누리는 이곳에서 방향을 바꿔 다시 지구 쪽으로 온 뒤 지구를 지나쳐 달을 향해 간다. 이 경로를 그림으로 그려 보면 리본형 고리 모양이 된다. 총거리는 600만㎞에 이른다.다누리가 지구에서 달까지 3일 만에도 갈 수 있는 직선 경로를 두고 먼 길을 택한 이유는 연료를 아끼기 위해서다. 지구에서 달까지 바로 가는 방식은 시간은 절약되지만 연료 소모가 크다. 반면 BLT 방식은 태양, 지구, 달의 중력을 활용해 연료를 25% 정도 아낄 수 있다. 연료를 아끼는 만큼 좀 더 오랫동안 달을 탐사할 수 있다. 지금까지 미국과 일본만 성공한 고난도 기술이다.다누리의 임무 중엔 우주 인터넷 시험이 있다. 방탄소년단(BTS)의 노래 ‘다이너마이트’ 뮤직비디오 신호를 지구에서 받아 실시간 재생이 가능한지를 시험할 계획이다. 우주에서 들려올 ‘다이너마이트’가 벌써부터 기다려진다.김지현
-
과학과 놀자
갯벌은 생태적기능·오염정화·재해예방 등 보물같은 공간
우리나라는 삼면이 바다로 둘러싸여 있다. 특히 서해안과 남해안은 동해안과 달리 밀물과 썰물의 차가 커서 바닷물이 빠지면 넓은 갯벌이 드러난다. 갯벌은 강의 하류와 바다가 만나는 지점으로, 밀물과 썰물 시간에 따라 물에 잠기거나 공기에 노출돼 생물 다양성이 풍부하다.선사시대부터 갯벌은 사람들의 생활 터전이었다. 식량 자원이 풍부한 바닷가에서 거주해 신석기시대의 조개더미가 발견되고, 삼국시대에는 미역을 먹었다는 기록도 《삼국유사》에서 볼 수 있다. 지금도 갯벌은 갯마을 사람들에게 먹을거리를 무한 제공하며 생물자원의 생산지 역할을 하고 있다. 또 갯벌은 육지에서 배출돼 퇴적되는 오염물과 부유물 등의 오염물질을 정화시키고, 홍수 및 태풍으로 인한 피해를 감소시키기도 한다. 게다가 아름다운 경관과 관광 등 여가 활동을 제공하니, 이 얼마나 소중한 곳인가!갯벌을 아직 가보지 않았다면 방학이나 주말을 이용해 찾아가보자. 갯벌 생태계에 가서 직접 다양한 종을 탐색한다면 종 다양성의 의미를 경험할 수 있을 것이다. 찰흙처럼 고운 곳, 모래가 많은 곳, 자갈이 깔린 곳, 갯바위로 이뤄진 곳 등 갯벌의 모습은 다양하다. 이 중 갯바위에는 여러 종의 생물이 부착해 살아가므로 갯바위가 보전된 지역에 가면 진흙 갯벌보다 다양한 종을 관찰할 수 있다.갯벌로 떠나기 전에는 조수간만 차에 대한 정보 및 기후 조건 정보를 잘 살펴봐야 한다. 밀물과 썰물의 시각은 매일 달라진다. 바닷물이 들어오는 속도는 매우 빠르므로 썰물 시각을 기준으로 2시간 전에 갯벌에 방문하는 게 적당하며, 썰물 시간일 때는 뭍으로 돌아오기 시작해야 한다. 또 조수간만의 차이가 가장 큰 ‘
-
과학과 놀자
아삭한 채소를 개발한 한국 대표 농학자 우장춘
국립중앙과학관과 함께하는 과학 이야기 (12)한국을 대표하는 전통 음식 김치는 배추와 무 등 신선한 채소가 있어야 제맛을 낼 수 있다. 아삭아삭하게 씹히는 배추와 무의 식감이 김치 맛을 더해 준다. 그런데 우리가 먹는 배추와 무가 원래부터 그렇게 아삭아삭했던 것은 아니다. 그런 배추와 무를 개발해 보급한 사람은 한국을 대표하는 농학자 우장춘(1898~1959)이다.우장춘 이전에 과학자들은 생물 종의 탄생을 진화론으로 설명했다. 19세기 영국 생물학자 찰스 다윈은 <종의 기원>에서 생존에 유리한 변이(생물 개체가 가진 특성)가 자연 선택에 의해 살아남으면서 새로운 종으로 진화한다고 봤다. 나무가 새 가지를 치며 자라듯이 생물 종도 기존 종에서 새로운 종이 갈라져 나오면서 다양해진다는 것이다.그러나 우장춘은 종의 분화만으로는 생물 종의 탄생을 설명할 수 없다고 생각했다. 그는 종이 달라도 같은 속(屬)에 들어가는 식물을 교배하면 새로운 종을 만들어 낼 수 있다고 봤다. 우장춘은 이를 증명하기 위해 종은 다르지만 같은 속인 배추와 양배추를 교배해 제3의 식물인 서양 유채를 만들고, 염색체 분석을 통해 이들 사이의 세포학적 관계를 밝혀냈다. 즉, 유채가 배추와 양배추의 자연적인 잡종 결과 탄생한 새로운 종이라는 사실을 밝혀낸 것이다.이처럼 서로 다른 종이 합쳐져 새로운 종이 되는 것을 '종의 합성'이라고 한다. 우장춘은 1936년 도쿄제국대학 농학박사 학위 논문인 '배추 속(屬) 식물에 관한 게놈 분석'에서 이 같은 이론을 세계 최초로 제시했다. 이 이론은 같은 종끼리만 교배가 가능하다고 본 당시의 패러다임을 깨뜨린 것이었다.종의 합성은 두 식물을 교배해 세