본문 바로가기
  • 과학과 놀자

    한강이 얼었어도 결빙으로 보지 않는 이유는?

    2022년 크리스마스는 많이 추웠다. 23일, 24일 서울 하루 최저기온이 영하 13도보다 낮았다. 한강이 일부 얼어 있었는데, 기상청에서는 25일에야 올겨울 처음으로 한강이 결빙됐다고 발표했다. 2021년 크리스마스에도 25일은 영하 14도, 26일은 영하 15도보다 낮았고, 역시 한강은 일부 얼어 있었다. 그런데 2022년 3월 한강이 2년 만에 또다시 얼지 않았다고 발표했다.한강이 얼었다는 기준은 무엇일까. 결론은 기상청이 정한 감시구역을 관측해 결빙을 판단한다는 것이다. 감시구역은 노량진부터 센 한강대교 두 번째와 네 번째 교각 사이, 상류방향으로 100m 떨어진 곳의 띠 모양 구역이다. 이곳이 완전히 얼음으로 덮여 강물이 보이지 않을 때를 결빙으로 판단한다. 기상 관측은 1906년 시작했고, 그 당시 노들나루로 불린 노량진은 한강의 주요 나루 중 하나였다. 관측을 위해 접근하기에 가장 적합해 이곳을 관측 지점으로 선정한 것이다.지난 5년간 관측한 결과 한강이 결빙되기 전 5일 동안 서울의 하루 최저기온이 영하 10도 이하이고, 최고기온도 영하에 머물 때 결빙되는 경향을 보였다고 한다. 하루 최저기온이 영하 10도보다 낮은 날이 나흘 이상 지속되면 한강 결빙 기사가 나올 수도 있으니 찾아보자.한강이 얼어도 관측 지점이 얼어야 결빙을 알리듯, 우리 동네 벚꽃이 피기 시작해도 개화했다는 기사는 나오지 않는다. 이번에는 벚꽃의 개화 관측 기준을 알아보자.벚꽃처럼 한 개체에 많은 꽃이 피는 다화성 식물은 한 나무에서 임의의 한 가지에 세 송이 이상 꽃이 활짝 피었을 때를 개화로 판단한다. 벚꽃의 개화는 기온과 일조시간에 크게 영향을 받는다. 일조시간이 짧더라도 기온이 높으면 빨리 개화하기도

  • 과학과 놀자

    거위는 태어나서 처음 접한 대상을 엄마로 인식

    요제프 비트만(1842~1911)이 쓴 에서 솔로몬 왕은 마법 반지를 사용해 짐승, 새, 물고기, 벌레와 이야기한다. 그런데 나이팅게일 새가 솔로몬 왕에게 그의 아내 999명 가운데 한 명이 젊은 사내와 바람이 났다고 밀고했고, 이에 분노한 솔로몬 왕은 마법 반지를 집어던졌다. 그 후로 솔로몬 왕은 동물의 말을 알아들을 수 없게 되었다.1973년 니콜라스 틴베르헌과 카를 폰 프리슈, 콘라트 로렌츠는 동물 행동 연구로 노벨 생리학·의학상을 공동 수상했다. 아마 이들은 마법 반지 없이도 몇몇 동물의 아름답고 진실한 이야기를 들려줄 수 있는 사람일 것이다. 특히 로렌츠는 dufj 과학 저술을 통해 자신이 관찰하고 경험한 동물의 아름답고 진실된 이야기를 많은 사람에게 들려주고 있다.성공한 의사의 아들로 태어난 로렌츠(1903~1989)는 오스트리아 알텐베르크의 대저택에서 온갖 동물을 키우며 유복한 시절을 보냈다. 알텐베르크에 있는 그의 집은 작은 노아의 방주 같아서 새뿐만 아니라 수족관 속의 갖가지 물고기부터 원숭이 같은 동물까지 있었다.로렌츠는 자신의 연구를 통해 ‘동물 행동에서 본능이 중요한 역할을 한다’고 주장했는데, 당시 학계에서는 이런 로렌츠의 생각에 동의하지 않았다. 파블로프나 스키너 같은 당대 동물 관련 학자들이 실험실에서 쥐와 비둘기 등을 관찰한 결과를 바탕으로 ‘동물에게는 타고난 행동(본능)이나 주관적 체험이 있을 수 없으며, 동물의 모든 행동은 학습된 것’이라고 주장했기 때문이다. 하지만 로렌츠는 자연에서 동물을 관찰함으로써 비교행동학이라는 새로운 학문을 개척했다. 특히 로렌츠의 각인(imprinting) 현상은 학습이론이나 정치학 등에서도 차용

  • 과학과 놀자

    카타르 월드컵에서 확인한 스포츠 과학

    신나는 과학을 만드는 선생님들의 과학 이야기 (16)지난달 막을 내린 카타르 월드컵에서 우리 대표팀이 포르투갈을 상대로 극적인 역전승을 거두며 16강에 진출한 순간을 기억할 것이다. 우리에게 큰 감동을 준 지난 월드컵은 첨단 과학의 격전장이기도 했다.포르투갈전에서 역전 골을 넣은 황희찬은 윗옷을 벗고 속옷을 드러낸 세리머니로 화제가 됐다. 당시 황희찬이 입은 조끼처럼 생긴 검정 속옷은 전자 성능 추적 장치(EPTS)라고 하는 첨단 웨어러블 기기(몸에 착용하는 첨단 기기)다. 이 장치에는 위성 위치 확인 시스템(GPS) 수신기와 각종 센서가 들어 있어 경기 중 선수들이 뛴 거리와 달리는 속도 등이 자동으로 기록된다. 선수가 경기장의 어느 지점에서 많이 활동했는지도 나타난다.감독·코치들은 이렇게 수집된 정보를 훈련과 전술에 반영한다. 뿐만 아니라 피로로 인한 부상이나 심장 이상으로부터 선수를 보호할 수도 있다.월드컵 직전 얼굴을 다친 손흥민은 3D 프린터로 제작한 마스크를 쓰고 뛰었다. 물체의 형태를 정확히 측정하는 3D 스캐닝 기술로 손흥민의 얼굴 형태를 본뜬 뒤 딱 맞는 모양과 크기의 마스크를 3D 프린터로 출력한 것이다.마스크 재질로는 탄소 소재가 쓰였다. 탄소 소재는 무게가 가볍고 탄성이 좋으면서 부식에 강하고 철보다 강도가 높다. 운동장에서 격렬하게 달려야 하는 축구선수의 얼굴을 보호하기에 제격이라고 할 수 있다.카타르 월드컵 공인 축구공 ‘알 릴라(Al Rihla·여행)’에도 과학 원리가 많이 숨어 있다. 알 릴라는 스무 개의 스피드 셀 패널 구조로 제작돼 기존 축구공에 비해 빠르고 정확하게 날아간다. 이 공에 들어 있는 관성 측정 센서는 500

  • 과학과 놀자

    고분자 플라스틱 화학분해하면 새것처럼 사용

    수만 년이 지나 우리 후손이 2023년의 역사를 발굴하기 위해 땅을 파면 플라스틱이 화석처럼 나올 것이다. 경제협력개발기구(OECD) 보고서에 따르면, 한국인은 1인당 연간 약 70㎏의 플라스틱 쓰레기를 발생시킨다.우리가 사용한 플라스틱의 10% 정도만 재활용되며 나머지는 매립되거나 소각된다. 플라스틱을 매립할 경우 약 500년이 지나야 썩고, 소각할 경우에는 다이옥신과 같은 유독가스가 배출된다. 우리는 학교나 가정에서 플라스틱 분리배출을 열심히 하는데도 플라스틱의 재활용 비율은 왜 낮을까? 그 이유는 우리가 쓰는 플라스틱의 성분과 구조를 들여다보면 알 수 있다.생수병을 보자. 물이 담긴 투명한 플라스틱의 종류는 폴리에틸렌테레프탈레이트(PET)고, 라벨은 폴리프로필렌(PP), 뚜껑은 고밀도폴리에틸렌(HDPE)이다. 플라스틱을 재활용하기 위해서는 생수병의 라벨과 뚜껑을 제거해 종류별로 모아야 한다. 같은 재질끼리 모은 플라스틱은 고온에서 녹인 뒤 냉각시켜 새로운 플라스틱으로 태어나게 하는데, 이를 ‘기계적 재활용’이라 한다.이번엔 화장품 용기를 보자. 대부분의 화장품 용기에는 OTHER이라는 표시가 있다. 화장품 용기로 사용되는 플라스틱을 만들 때는 물건을 담는 기능 외에도 여러 가지 기능을 더해야 하기 때문에 다양한 첨가제를 넣는다. 플라스틱에 색을 내기 위한 착색제, 내용물을 자외선으로부터 보호하기 위한 자외선(UV) 차단제, 손으로 눌러 화장품을 짤 수 있도록 플라스틱의 밀도를 변화시키는 가소제 등을 첨가한다. 플라스틱 용기마다 첨가된 분자가 다르기 때문에 동일한 성분의 플라스틱을 기계적으로 분류해 녹여 재활용하는 것은 불가능하다. 따라서 이와 같

  • 과학과 놀자

    과학은 아는 것도 믿는 것도 의심하고 검증해야

    과학 지식의 발전은 모르는 것을 아는 것으로 바꾸려는 탐구 활동에 의해 이뤄진다. 이런 탐구 활동을 잘 해내거나 탐구 결과를 바르게 이용하려면 모르는 것이 어떤 과정을 거쳐서 아는 것으로 바뀌는지 살펴볼 필요가 있다.우리가 아는 것들은 스스로 깨우친 것도 있고, 다른 사람이 알아낸 것을 누군가의 말이나 글을 통해 접하게 된 것도 있다. 무언가를 알게 되는 과정을 잘 살펴보면, 아는 것은 믿는 것을 바탕으로 존재한다는 것을 파악할 수 있다. 자신의 지식이 어떤 믿음을 바탕으로 존재하는지 잘 파악할수록 그 믿음이 깨질 때 틀린 지식을 버리고 더 나은 지식으로 나아가기 쉽다. 하지만 아는 것과 믿는 것의 연결 관계가 불분명한 사람은 더 나은 지식으로 나아가지 못하고 꽤 오랫동안 틀린 지식을 옳다고 잘못 생각하며 살게 될 것이다. 틀린 지식 중에는 삶에 별다른 영향을 주지 않는 것도 있지만, 가습기 살균제가 호흡기에 치명적일 리 없다고 생각하며 팔았던 사람들처럼 사람의 목숨이나 건강에 치명적인 악영향을 줄 수도 있다. 따라서 우리는 무언가를 알게 하는 믿음에는 어떤 것들이 있는지 파악하고, 그것들이 지금도 믿을 만한 것인지 끊임없이 점검해야 한다.논의를 단순화하기 위해 우주 밖으로 가서 지구가 둥글다는 것을 눈으로 확인한 사람을 A라 하자. A를 만나 그가 진지한 표정으로 지구가 둥글게 보였다고 말하는 것을 들은 사람을 B라 하자. A와 B의 대화를 촬영한 동영상을 보거나 대화가 기록된 책을 읽은 사람을 C라 하자. 이 이야기에서 A, B, C 모두 지구가 둥글다는 것을 알게 되었다고 말할 수 있지만, 하나의 과학 지식이 개인의 ‘아는 것’이 되려면 A, B, C 모두 각

  • 과학과 놀자

    100년만의 급변 현상…해수면 60m 높아질수도

    최근 몇 년 동안 우리는 TV 뉴스나 인터넷 기사, SNS 등의 다양한 경로를 통해 지구상 곳곳에서 일어나는 기상이변을 접하고 있다. 그리고 최근 발생한 홍수와 가뭄, 폭우와 폭설, 폭염과 한파 등의 기상이변에는 '관측 사상 최초' '역대급' '최악의' '기록 갱신'과 같은 표현이 붙으면서, 안타깝게도 이들 현상이 일어나는 원인으로 기후변화를 지목한다.기후변화에 관한 정부 간 협의체(IPCC)는 1988년 설립된 이후 5~7년을 주기로 기후변화의 과학적 근거와 정책방향을 제시하는 IPCC 평가보고서(AR)를 발간해왔다. 현재는 제6차 평가보고서(AR6) 작성 주기(2015~2022년)로, 그중에서 기후변화의 과학적 연구를 바탕으로 하는 제1실무그룹의 보고서에 의하면 최근 변화의 규모와 다양한 측면으로 본 현재 상태는 수백 년에서 수천 년에 이르는 기간 동안 전례 없는 수준이다.이 같은 기후 시스템의 변화는 지구온난화에 의한 것으로, 이것을 일으킨 원인이 인간의 영향 때문이라는 것은 명백한 사실이다. 산업혁명기 이후 인간 활동에 의해 배출된 이산화탄소(CO2), 메탄(CH4), 아산화질소(N2O) 등의 온실가스(GHG)는 지구 온도를 꾸준히 증가시켜왔고, 현재 추정되는 지구 평균 온도의 증가량은 산업화 이전 대비 1.07도에 달한다.지구 평균 온도가 약 1도 올라갔다는 사실은 단순히 ‘지구가 조금 더워졌다’를 의미하지 않는다. 기상이변의 발생 빈도가 증가하고, 기후변화의 영향을 받기 전과 비교할 때 더 극단적이고 파괴적인 양상을 드러내고 있다. 해수면도 최대 60m나 높아질 수 있다. 지금처럼 화석연료를 남용하는 상태가 계속되고, 전문가들이 티핑포인트(돌이킬 수 없는 순간을 의미)로 단언

  • 과학과 놀자

    의사소통과 친화력 강한 개체가 생존력 높아

    “뽀삐! 가져와!” 장난감을 던지면서 소리를 외치면, 반려견이 신나게 달려가서 장난감을 물어온다. 장난감을 가지고 와서는 칭찬해달라고 꼬리를 마구 흔든다. 그뿐 아니다. 간식을 보면 활기차게 꼬리를 돌리고, 겁을 먹으면 꼬리를 힘없이 내리면서 감정을 표현한다.사람과 정서적 소통을 하며 가족처럼 지내다 보니 ‘반려’라는 단어를 개에게 붙여주기도 한다. 개가 인간에게 의존하는 듯하나, 사실 사람이 개에게 감정적 의지를 하는 사례도 있으니 반려견이라고 부르는 것도 이상하지 않다.개는 분류학적으로 늑대와 같은 종이다. 개와 늑대 모두 동물‘계’, 척삭동물‘문’, 포유‘강’, 식육‘목’, 개‘과’, 개‘속’, 늑대‘종’이다. 2명법은 속명과 종명으로 쓰는데, 2명법으로 쓴다면 개와 늑대는 Canis lupus로 학명도 같다. 아종이 다를 뿐이다. 같은 종이기 때문에 개와 늑대 사이에 태어난 늑대개는 생식능력이 있다. 개와 늑대의 유전자는 99.96% 일치한다. 그런데 왜 늑대가 아니라 개가 인간의 대표적인 반려동물이 되었을까. 개는 ‘가축화’되었기 때문이다.늑대는 무리지어 생활하면서 계급 사회를 이루고 서로에게 의존한다. 동물학자 숀 엘리스는 미국 네즈퍼스국립공원에서 늑대 무리와 몇 개월을 지내면서 교감 장면을 보여줬다. 사회성이 좋아 길들이기도 가능하다. 스웨덴에서 이뤄진 늑대의 사회화 과정 연구에서 생후 6주 된 새끼 늑대에게 공 가져오기 실험을 했을 때 3번 중 3번 모두 공을 물고 돌아온 늑대가 있었다. 그렇다면 사람이 이런 온순한 성격의 늑대를 골라서 키우며 길들이기 시작했고, 점점 야생적인 늑

  • 과학과 놀자

    담백하고 감칠맛 나는 새우깡의 비밀은…

    바나나 우유에는 바나나가 없고, 붕어빵에는 붕어가 없다. 그럼 새우깡에는 새우가 있을까? 답은 ‘Yes!’다. 보통 크기의 새우깡 한 봉지 안에는 꽃새우가 다섯 마리 정도 들어 있다. 1971년 국내에서 첫선을 보인 이후 매년 과자 판매량 순위에서 상위권을 차지하고 있는 새우깡의 장수 인기 비결은 무엇일까?서해의 꽃새우를 넣은 반죽을 구워낸 새우깡에는 특별한 것이 있다. 첫 번째는 독특한 빗살무늬 모양이다. 이는 새우의 마디를 형상화한 것으로, 빗살무늬 롤러를 밀어서 만들어낸다. 빗살무늬는 밋밋하지 않아 보기 좋을 뿐 아니라 표면적이 넓어져 제품이 구워질 때나 건조될 때 도움을 준다.두 번째는 기름에 튀겨내는 대부분의 스낵과 달리 뜨거운 소금 위에서 굽는 방식인 ‘파칭(parching)’을 사용한다는 점이다. 파칭은 해산물을 가공하는 과자를 만들 때 사용하는 방법으로, 소금을 가열해 뜨거워지면 거기에 식물성 기름을 바른 새우깡 반죽을 올려 구워낸다. 이렇게 만들어진 새우깡은 기름에 튀기지 않아 담백하고 새우의 감칠맛을 잘 유지할 수 있다. 그런데 왜 하필이면 소금을 사용하는 걸까?소금은 물에 넣으면 폭발하는 금속 나트륨(Na)과 황록색의 독가스인 염소(Cl2)가 만나서 만들어지는 화합물이다. 위험한 금속과 독성을 가진 기체가 만나 소금이 되다니, 화학 변화란 얼마나 놀라운 것인지. 두 원소 사이에서는 무슨 일이 일어나는 걸까? 나트륨은 주기율표에서 1족에 속하는 원소로, 최외각 껍질에 전자 1개가 있다. 염소는 17족에 속하는 원소로, 최외각에 전자 7개가 들어 있다. 8개가 가장 안정하다는 옥텟 규칙에 따라 나트륨은 한 개의 전자를 버리려 하고, 염소는 한