본문 바로가기
  • 과학과 놀자

    태양광 설비·친환경 소재 사용 지원…'1등급 제로에너지건물' 늘려 나가야죠

    2020년 10월 국가비전으로 2050년 탄소중립이 선언됐다. 2021년 5월 출범한 탄소중립위원회의 검토를 바탕으로 2021년 10월 정부는 ‘2050 탄소중립 시나리오안’을 발표했다. 이 중 건물 부문은 탄소 배출량을 2018년 5210만톤CO2eq에서 2050년까지 620만톤CO2eq로 88.1% 줄이는 것을 목표로 하고 있다. 또 2021년 10월 발표된 2030 국가 온실가스 감축목표(NDC) 상향안에서는 2018년 대비 절감률을 32.8%로 올렸다.건물 부문의 온실가스는 건물에서 사용되는 에너지에 의해 발생하는 양으로 산정한다. 즉, 건물 부문에서 온실가스를 줄인다는 의미는 건물 에너지의 사용을 줄인다는 의미다.건물 에너지는 크게 두 가지로 구분된다. 석탄, 석유, 천연가스 등과 같이 건물 내부에서 연소시켜 에너지를 얻는 직접 배출량과 전력, 열에너지(지역난방) 등과 같이 1차 에너지를 전환해 건물에서 사용하는 간접 배출량이다.2021년 한국부동산원의 에너지 사용량 통계에 따르면 2020년 전체 건축물의 에너지 사용량은 3318만7000TOE(석유환산톤)였다. 용도별로는 공동주택(43.3%) 단독주택(16.3%) 등 주거용 건물이 전체의 약 60%를 차지하고 그 외는 비주거용에 해당했다. 에너지원별로 보면 전기가 전체의 52%를 차지하고, 도시가스(41%) 지역난방(7%) 순이었다. 한편 주거용 에너지 사용량은 도시가스(52%)가 가장 많았으며 비주거용의 경우에는 전기(74%)가 가장 많은 것으로 조사됐다. 건물 에너지 어떻게 평가할까건물마다 외피, 면적, 연도 등 에너지에 영향을 미치는 다양한 인자가 존재하기 때문에 건물별 에너지 효율을 구체적으로 평가할 방법이 필요하다. 이에 정부는 건물의 에너지 소요량 및 이산화탄소 발생량을 포함한 에너지 성능을 평

  • 과학과 놀자

    나와 비슷한 성향의 사람들이 좋아한 콘텐츠, OTT 서비스 업체가 나에게도 추천해주죠

    코로나 덕분에 급성장한 회사가 있다. 전 세계 OTT(Over-the-top) 시장을 선도하고 있는 넷플릭스다. 닐슨코리아가 발간한 ‘2020년 하반기 미디어 리포트’에 따르면 넷플릭스는 코로나 영향 속에서도 순이용자수가 64.2% 늘었다. 한국수출입은행 보고서 역시 넷플릭스뿐 아니라 왓챠, 웨이브, 티빙과 같은 국내 OTT 서비스도 2012년 이후 연평균 28%의 고속 성장을 거듭하고 있다고 밝혔다. 바야흐로 대OTT 시대다.OTT 서비스가 기존 TV 채널이나 VOD 서비스에 비해 사용자의 적극적인 가입 및 시청을 위해 활용하는 전략은 크게 두 가지다. 첫 번째는 해당 OTT 서비스를 가입해야만 시청할 수 있는 오리지널 콘텐츠다. K드라마의 인기를 이끈 ‘오징어게임’이 대표적인 사례다. 사람들은 오징어게임이나 킹덤 같은 유명 콘텐츠를 시청한 이후에도 넷플릭스에 머문다. 사용자의 시청 이력을 바탕으로 개인 취향에 맞는 영화와 드라마를 지속적으로 추천해 주기 때문이다. 이것이 바로 OTT 서비스의 차별화 전략 두 번째, 개인화다.개인화란 사용자의 과거 시청 이력으로부터 그 취향을 분석하고 이를 토대로 개별 사용자에게 맞춤화된 콘텐츠를 제공하는 것을 말한다. 초기 추천 서비스의 경우 사용자가 입력한 나이, 성별, 거주지와 같은 개인 정보에 따라 미리 준비해 둔 추천이 이뤄졌다. 이는 해당 범주에 속하는 대부분의 사용자에게 만족스러운 추천 결과를 제공해 줄 수는 있겠지만, 개인에 따라 서로 다른 결과를 제공해주는 개인화와는 다른 개념이다. 어도비 설문 조사에 따르면 콘텐츠가 개인화되지 않은 경우 소비자의 42%가 불만을 표출한다고 할 정도로 개인화 서비스는 필수적인 마케팅 전략이 됐다.

  • 과학과 놀자

    오염된 실내 환경은 건강·집중력 등에 영향 끼쳐…온도·소음·조명·공기 질 등 4가지 항목 평가해요

    20세기 이후 대부분의 사람들은 건물 실내에서 하루 중 대략 90% 이상의 시간을 보내고 있다. 특히 우리나라 사람들은 직장과 학교, 식당 등 공공시설의 실내 체류 시간이 미국, 캐나다 등 선진국에 비해 평균 한두 시간 더 많다는 연구 결과도 있다. 실내 환경은 건물 안에서 인간을 둘러싸고 있는 주변의 모든 것이라고 표현할 수 있으며 그만큼 실내 환경은 우리에게 밀접하다.하지만 실내 활동 및 거주 시간 증가, 공기 질에 대한 국민적 관심 증가, 에너지 효율 증가를 위한 건물 밀폐화 등으로 실내 환경에 대한 여러 부작용도 부각되고 있다.예를 들어, 건물 안의 다양한 오염물질이 방출돼 발생하는 빌딩증후군, 화학물질 과민증 등이 있다. 건물에서 오래 생활하면서 머리가 자주 아프고 어지러우며, 눈 또는 목이 충혈되거나 뻣뻣하고, 피곤하거나 졸리며, 호흡기 질환 및 집중력이 감퇴하는 등 다양한 증상이 이와 관련있다는 연구들도 있다. 세계보건기구(WHO)의 보고에 따르면 세계적으로 모든 빌딩의 40% 정도가 실내 공기 오염에 따른 건강상의 문제를 일으키고 있다. 실내환경질 평가실내 환경은 해당 공간에 머무르는 학생과 직장인에게 공부 시간, 업무 생산성, 건강, 삶의 질 향상에 영향을 미친다. 이 때문에 실내 공간에 머무르는 사람, 즉 재실자에게 최적의 실내 환경을 제공하기 위한 실내 환경 평가 분야의 연구도 활발하게 이뤄져왔다. 실내 환경이 얼마나 오염됐는지, 개선됐는지를 평가하기 위해 연구적으로 실내환경질(IEQ)이라는 용어를 사용한다.IEQ의 영향 요인은 물리적, 문화적, 심리적 요소 등 다양한 요소를 포함하지만, 일반적으로 열 쾌적성(온도·습도), 소음 쾌적성, 빛 쾌적

  • 과학과 놀자

    테슬라는 왜 운전대를 사각형태로 만들었을까

    우리는 매일 무언가를 돌리면서 산다. 문고리를 돌려 문을 열고, 자동차나 자전거를 운전한다. 이렇게 무언가를 돌리는 곳에는 손잡이가 존재한다. 왜 우리는 손잡이를 만들었을까. 편히 잡을 수 있도록 손잡이를 만든 걸까. 물론 손잡이를 통해 편하게 잡을 수 있다는 것도 큰 장점이지만, 사실 돌리기 위한 손잡이에는 또 다른 과학적 원리가 숨겨져 있다.물체에 작용해 물체를 회전시키는 원인이 되는 물리량을 돌림힘(r)이라고 한다. 돌림힘은 ‘회전축으로부터 힘이 작용하는 곳까지의 거리×힘의 크기’다. 즉 물체를 회전시키기 위해서는 힘을 크게 해도 되지만, 회전축으로부터 힘이 작용하는 곳(작용점)까지의 거리를 증가시켜도 된다. 이는 회전문을 밀 때 큰 힘을 작용해도 되지만, 회전축에서 먼 곳을 밀수록 회전문이 잘 돌아가는 원리와 같다. 회전축으로부터 힘이 작용하는 곳까지의 거리를 증가시키면 돌리는 데 힘은 덜 드는 장점이 있지만 같은 각도를 돌리기 위해서 더 많은 거리를 이동시켜야 한다는 단점도 있다. 그렇다면 이제 본격적으로 ‘회전시키기 위한 손잡이’에 대해 알아보자.회전문, 동그란 문고리, 자동차 운전대, 야외 수도꼭지 등이 회전축을 중심으로 대칭적으로 둘러싼 손잡이가 있는 구조이다. 이러한 구조는 회전축으로부터 작용점까지의 거리를 길게 만들기 위해서 공간이 많이 필요하다는 단점이 있지만, 사방으로 손잡이가 있기 때문에 다양한 방향에서 잡고 돌릴 수 있다는 장점이 있다. 특히 자동차의 운전대는 다양한 방향에서 자유롭게 잡고 돌릴 수 있어야 하기 때문에 회전축을 중심으로 어느 곳에서든 잡을 수 있는 원형 손잡이다. 그리고 예전

  • 과학과 놀자

    우주 '암흑물질' 찾기위해 과학자들은 땅굴을 판다?

    1963년 천문학자 베라 루빈은 나선은하 가장자리에 있는 별들이 아주 빨리 돌면서도 은하 밖으로 튕겨 나가지 않는다는 걸 관측했다. 탈수기에 넣고 돌린 빨래에서 물이 떨어져나가지 않는 것처럼 이상한 일이지만, 은하에 우리가 알고 있는 것보다 더 많은 질량이 숨어 있다고 가정하면 설명이 가능하다. 질량의 역할을 할 것으로 유추 가능한 것은 암흑 물질(dark matter)이다.암흑물질은 눈에 보이지 않지만 은하에 존재하며 중력을 통해 별들의 궤도에 영향을 미친다. 암흑 물질은 이름처럼 어둡기보다 투명하다. 예를 들어 태양 내부에는 암흑 물질이 잔뜩 모여 있을 가능성이 높지만, 주황색으로 빛난다. 은하에 고요히 존재하는 암흑 물질은 태양이 지구를 달고 220㎞/s의 속력으로 지나칠 때 우연히 우리의 몸을 통과하기도 할 것이다.과학자들은 암흑물질에 의해 시공간이 휘는 중력 렌즈 효과, 두 개의 암흑물질 덩어리가 서로를 본체만체 스쳐 지나가는 총알 은하단(Bullet Cluster) 등 다양한 현상을 관측해 암흑물질의 존재를 재차 검증했다. 암흑물질이 우주 에너지 지분의 27%를 가지고 있다는 구체적인 정보까지 손에 넣었는데, 이는 우주배경복사(CMB·Cosmic Microwave Background) 데이터를 분석해 얻은 결과다. 또 시뮬레이션을 통해 초기 우주에 무거운 암흑물질이 충분히 존재해야 시간이 흐르며 큼직큼직한 중력의 구심점들이 만들어지고, 그로부터 은하와 별이 탄생할 수 있음을 추론해 냈다.오늘날 대부분의 과학자가 암흑물질의 존재를 인정하기에 이르렀음에도 암흑물질을 ‘찾는 것’은 큰 숙제로 남아 있다. 1980년대에 들어서며 천문학의 영역이던 암흑물질이 입자물리학자들의 관심을 끌기

  • 과학과 놀자

    마른 상태보다 차량 제동거리 5배 길어져…미끌미끌한 '살얼음 도로'가 위험한 이유

    동계올림픽에서는 스케이팅, 봅슬레이, 스키, 컬링 등 다양한 종목의 경기가 펼쳐집니다. 경기에서 최선의 결과를 얻으려면 그동안 준비한 선수들의 운동 능력이 최대한 발휘될 수 있도록 경기장, 특히 얼음 표면 온도가 목적에 맞게 잘 관리돼야 하죠.예를 들어 아이스하키나 스피드스케이팅처럼 얼음 표면이 미끄러우면서도 잘 손상되지 않아야 하는 종목에서는 얼음 표면의 관리 목표 온도가 영하 9도~ 영하 6도지만, 피겨스케이팅처럼 얼음이 조금은 파여야 원활하게 움직일 수 있는 종목의 관리 목표 온도는 영하 3도입니다.동계올림픽에서 선수들의 경기력은 경기장의 얼음 표면 온도 관리에 큰 영향을 받지만, 얼음 표면이 왜 미끄러운지는 아직 명확하게 규명됐다고 할 수 없습니다. 1850년 전기학의 아버지 마이클 패러데이가 주장한 영하의 온도에서도 두 개의 다른 얼음이 서로 붙어서 어는 현상이 얼음 표면에 얇은 물층이 존재하기 때문이라는 이론이 받아들여지지 않은 이후 스케이트 날에 의해 얼음 표면에서 발생한 압력과 마찰이 얼음의 어는점을 낮추거나 얼음을 가열시켜 얼음층 위에 얇은 물층을 생성하고 이 얇은 물층이 얼음 표면을 미끄럽게 한다는 주장이 오랫동안 설득력 있게 받아들여져 왔습니다. 그러나 2018년 이후 네덜란드와 프랑스 연구팀은 얼음 위엔 액체와 비슷한 성질을 지니는 유사 액체층(quasi-liquid layer)이 존재하며, 압력에 의해 아주 작은 단위로 쪼개진 얼음층이 분자구조가 헐거워 움직임이 비교적 자유로운 유사 액체층과 섞이면서 윤활유와 같은 역할을 한다는 주장을 했습니다.동계올림픽 경기장과 달리 도로는 미끄러짐이 발생하지 않도록 관리해야 하는 장소입니

  • 과학과 놀자

    기후 변화 주요 원인은 대기 중 온실가스의 증가…80만년간 일정하게 유지되다 산업혁명 이후 급증

    2021년 1월, 사시사철 더운 아프리카 사하라와 중동 사우디아라비아 사막의 기온이 영하로 떨어지고 눈이 쌓였다. 세계 곳곳에서 기상 이변이 일어날 때마다 기후 변화나 기후 위기가 같이 소환된다. 지구의 기후 시스템은 어떻게 작동하기에 기후가 변한다는 것일까.기후는 어떤 지역에서 오랜 시간 반복되는 평균적인 기상 현상을 뜻한다. 보통 어느 지역에서 30년 이상 관측한 기온, 습도, 강수량, 풍향, 풍속 등의 날씨 정보를 평균한 값이다. 하루 반짝 더운 것은 기상 이변이고 여름의 평균 기온이 올라가는 것은 기후 변화다.지구의 연평균 기온은 약 15도로 일정하다. 기온이 일정하다는 것은 들어온 것만큼 다시 나가서 남는 열이 없다는 걸 의미한다. 이 상태를 복사평형이라고 한다. 만약 지구가 달처럼 대기가 없다면 낮 동 안 흡수된 에너지가 모두 방출되어 낮과 밤의 기온 차이가 크고 평균 기온도 낮아질 것이다. 다행히 지구는 이불 같은 고마운 대기에 둘러싸여 더높은 온도에서 좀 더 복잡한 과정으로 복사평형을 이루고 있다.지구에 들어오는 태양복사에너지를 100%라고 할 때, 약 30%는 대기와 지표에서 반사되어 우주로 나가고 20%는 대기, 50%는 지표에 흡수된다. 데워진 지표는 지구복사에너지를 방출하고 그 중 극히 일부만 우주로 바로 나가고 대부분 대기로 흡수된다. 대기에 흡수된 에너지는 다시 대기를 데우고 우주와 지표로 방출되는데 이를 온실 효과라 한다. 대기와 지표에서 우주로 방출하는 에너지를 모두 합하면 70%로, 지구로 들어온 70%의 태양복사에너지와 같은 양이 되어 복사평형이 되고 평균 기온이 일정하게 유지된다. 그런데 대기중에 이산화 탄소 같은 온실가스가 많아지면, 지

  • 과학과 놀자

    신종 질병의 주요 원인은 동물이 옮긴 바이러스…박쥐가 품은 130여종 중 60종 전파돼 병 일으켜

    2019년 12월 이후 지금까지 전 세계에서 지속되고 있는 신종 코로나바이러스 감염증(COVID-19)은 SARS-CoV-2라는 바이러스로 인해 발생하는 중증 호흡기증후군이다. 지금도 알파(α) 베타(β) 감마(γ) 델타(δ) 오미크론 등 다양한 변이 바이러스가 나타나 사회 전반에 걸쳐 많은 혼란과 우려를 낳고 있다.사실 후천성면역결핍증(AIDS)을 일으키는 HIV, 1만8449명의 사망자를 낸 신종플루바이러스, 2002년에 발생한 신종 전염병을 일으킨 사스 코로나바이러스, 치사율이 50~90%에 달하는 에볼라바이러스와 같은 신종 바이러스가 출현할 때마다 인류 사회는 충격과 혼란을 겪었다. 신종 바이러스는 어떻게 나타나 심각한 질병을 일으키는 것일까.바이러스는 세균과 달리 세포의 구조나 생명 유지와 관련한 화학 반응 기구(예: 효소)를 갖추지 못한 채 유전체와 이를 둘러싼 단백질 껍질(capsid)로 이뤄진 감염체로 매우 작고 단순하다. 독감바이러스나 코로나바이러스 같은 동물 바이러스는 막으로 된 외피가 캡시드를 둘러싸기도 한다. 그래서 바이러스는 숙주세포를 떠나서는 스스로 그 수를 늘릴 수 없고, 생명 활동을 수행할 수도 없다. 바이러스는 대장균과 같은 세균과 비교하면 50~100분의 1 정도 크기다. 세균이 라면 상자만 하다면 바이러스는 사각 반지 케이스만 하다고 할 수 있다.바이러스 표면에 있는 단백질과 숙주세포의 외부에 있는 특이적인 수용체 분자 사이에는 열쇠와 자물쇠 같은 상호작용이 일어나며, 이런 작용에 의해 바이러스는 숙주세포를 인식한다.따라서 각각의 바이러스는 감염시킬 수 있는 숙주가 제한돼 있는데, 이 같은 특성을 바이러스의 숙주범위라 부른다. 웨스트나일바이러스(West Nile