#수학
-
대학 생글이 통신
예비 고3, 방학이 수학 성적 올릴 마지막 기회
지난 14일 대학수학능력시험이 있었습니다. 고등학교 3학년 학생들은 오랫동안 준비해온 수능을 끝내고 약간의 해방감을 맛봤을 것입니다. 반면 이제 고3이 되는 학생들은 이제부터 진짜 수험 생활의 시작이라고 할 수 있습니다. 새로운 출발선에서 어떻게 시작해야 할지 고민하는 학생도 많을 것입니다. 그중에서도 적지 않은 학생이 어려움을 겪는 수학 공부에 대해 이야기해보려고 합니다.고3 1월에 사설 인터넷 강의 수강권부터 끊는 학생이 많은데, 저는 별로 추천하지 않습니다. 인강은 내가 부족한 부분을 보완해야 할 때 도움을 받는 수단으로 활용하는 것이 좋습니다. 인강 수강권을 끊더라도 처음부터 끝까지 보는 데 집착하지 말고 필요한 부분만 골라서 보기를 추천합니다. 웬만한 내용은 EBS 인강에서도 충분히 배울 수 있습니다. 꼭 값비싼 사설 인강을 들어야 한다고 생각하지는 않습니다.수학 성적을 올리려면 절대적 공부 시간을 최대한 확보해야 합니다. 이런 습관을 들이기에 가장 좋은 시기가 겨울방학입니다. 고3이 되기 전 마지막 방학인 만큼 놀고 싶은 마음을 충분히 이해합니다. 하지만 적어도 1월 중순부터는 충분히 긴 시간을 수학에 투자하는 습관을 들이라고 당부하고 싶습니다.그럼 수학에 얼마나 많은 시간을 투입해야 할까요? 수학에 약점이 있다고 생각한다면 전체 공부 시간의 50% 이상은 수학에 투자해야 합니다. 1월에는 개념서를 보면서 시작하는 것이 좋습니다. 개념서를 보며 이해가 안 되는 부분이 있다면 인강을 활용하면 됩니다. 중요한 내용을 노트에 정리해두는 것도 좋지만, 노트 정리 자체에 매몰될 필요는 없습니다. 개념서에 나오는 문제는 하나도 안 틀리고 다 풀
-
학습 길잡이 기타
17세기 등장…수의 배열 통해 복잡한 계산 처리
2022년 수학 교육과정에서 주목할 이슈 중 하나는 행렬이 다시 포함되었다는 점입니다. 한동안 제외됐던 행렬이 교육과정에 재도입된 데는 분명한 이유가 있을 것입니다. 오늘은 행렬이 처음 등장하게 된 배경부터 최근 다시 중요해진 역사적 이유까지 살펴보고자 합니다.미지수의 개념이 도입되기 전, 사람들은 방정식을 풀기 위해 숫자의 나열을 활용한 방법을 사용했습니다. 이때 숫자들을 배열해 문제를 푸는 과정에서 자연스럽게 행렬의 개념이 도입되었는데, 어떻게 보면 이것이 행렬의 시작점이라고 할 수 있습니다. 수의 나열을 통해 복잡한 계산을 체계적으로 처리할 수 있었고, 방정식의 해를 구하는 데 큰 도움이 되었습니다.행렬의 개념도 17세기에 등장하게 됩니다. 당시 수학자들은 방정식을 풀고 연립방정식을 해석하는 과정에서 더 효율적인 방법이 필요하다고 느꼈습니다. 특히 여러 변수와 방정식을 한꺼번에 해결하려면 단순한 수의 나열만으로는 한계가 있었기에 숫자나 값을 배열해 체계적으로 연산할 수 있는 도구가 필요했습니다. 이를 위해 숫자들을 행과 열로 정리해놓은 형태가 바로 행렬입니다. 행렬은 수의 배열을 통해 복잡한 계산을 간단하게 처리할 수 있는 방식으로, 선형 변환이나 선형 연립방정식의 해를 구하는 데 유용했습니다. 이처럼 행렬은 단순한 계산을 넘어 여러 방정식을 동시에 풀기 위한 효율적 도구로 자리 잡았고, 이후 다양한 수학적·과학적 문제를 해결하는 데 필수 개념으로 발전했습니다.행렬의 큰 장점 중 하나는 복잡한 연산을 쉽게 처리할 수 있다는 점입니다. 숫자들을 정해진 형식으로 정리해 나열하면, 여러 방정식을 한꺼번에 계산하거나 다양
-
학습 길잡이 기타
포물선·타원·쌍곡선 모두 x와 y 이차식 표현 가능
안녕하세요! 오늘은 수학에서 매력적인 주제 중 하나인 이차곡선에 관해 이야기해보려 합니다. ‘이차곡선’이란 이름이 아직은 낯설게 들릴 수 있지만, 사실 중학교와 고등학교에서 접하는 곡선들이 바로 이차곡선에 해당합니다. 예를 들어, 중학교 3학년 때 배우는 포물선(이차함수)부터 시작해 고등학교 1학년 과정에서 등장하는 원, 그리고 선택과목인 기하에서 만나게 될 포물선, 타원, 쌍곡선이 모두 이차곡선입니다.수학자들이 이들을 한 그룹으로 묶어 ‘이차곡선’이라고 부르는 이유는 이 곡선들을 모두 x와 y의 이차식으로 표현할 수 있기 때문입니다. 이렇게 모양이 다양한 곡선이 서로 연결된 점이 있다는 사실이 꽤 흥미롭죠.오늘은 이차곡선의 정의와 각각의 특징을 살펴보면서 함수식을 몰라도 이차곡선이 왜 독특한 주제인지 알아보려고 합니다. 또한 기하학적으로 이 곡선들이 어떻게 나타나는지 함께 살펴볼 텐데, 이를 통해 수학적 개념을 보다 넓은 시각에서 바라보고, 수학이 서로 어떻게 연결되어 있는지 확인할 수 있을 것입니다.이 곡선들을 하나로 묶어 바라보기 시작한 건 상당히 오래되었습니다. 그리스 수학자 아폴로니우스가 그 주인공으로 알려져 있는데, 이 곡선들을 하나의 원뿔에서 모두 발견할 수 있기 때문에 이러한 이차곡선을 ‘원뿔곡선’이라고 부르기도 합니다.조금 인위적이기는 하지만, 두 원뿔이 서로 꼭짓점을 맞대고 대칭으로 놓인 원뿔이 있다고 상상해봅시다. 그러니까 y=x 그래프를 y축을 축으로 회전시킨 회전체라고 생각하면 편하겠네요. 이제 상상 속 이 회전체를 밑면과 평행하게 자른다면 그 단면은 무엇이 될까요? 상상을 잘 따라오고
-
학습 길잡이 기타
시·소설 속 수학 요소, 강력한 의미 전달 장치죠
우리나라 소설가 한강이 2024년 노벨 문학상을 받았습니다. 이는 한국인으로서는 최초의 노벨 문학상이자, 2000년 고(故) 김대중 전 대통령이 노벨 평화상을 받은 이후 두 번째 노벨상 수상입니다. 이번 수상으로 한국 문학이 세계 무대에서 다시금 조명받게 되었고, 한강 작가는 세계적 작가로서 한국 문학의 위상을 높이는 계기가 되었습니다.이번 기회에 한강 작가의 작품 등 문학작품을 읽어보게 되었습니다. 그런데 아무래도 필자가 수학 교사이다 보니 문학작품을 읽으면서 수학적 요소를 담거나 수학을 소재로 한 작품에 궁금증이 생겼습니다. 같이 한번 살펴봅시다.문학작품에서 수학적 요소는 작가가 자신의 상상력을 발휘해 표현하고자 하는 예술적 요소와 잘 어울립니다. 그리고 문학작품에서 말하고자 하는 강력한 의미를 전달하는 데 사용되기도 합니다.<플랫랜드(flatland)>는 1884년에 영국의 신학자이자 교육자이던 에드윈 A. 애보트(Edwin A. Abbott, 1383~1926)가 지은 수학 소설입니다. 이 소설에서는 2차원과 3차원 세계 간 충돌을 다루면서 계급사회의 문제를 수학적 개념과 함께 풍자적으로 다룹니다. 소설은 2차원의 존재인 정사각형의 시점으로 이야기를 전개합니다. 평면의 나라에서 직선, 삼각형, 원 등의 여러 가지 도형이 살아가는 이야기와 평면의 나라를 벗어나 점의 나라, 선의 나라, 공간의 나라를 여행하는 과정을 그리고 있습니다.수학의 개념을 바탕으로 계급사회의 문제를 기발하게 연결 지어 표현한 이 작품을 꼭 한번 읽어보길 권합니다.또 하나의 작품으로 조너선 스위프트(Jonathan Swift, 1667~1745)가 쓴 소설 <걸리버 여행기>가 있습니다. 이는 1726년에 발표한 소설로, 인간의 본성
-
학습 길잡이 기타
점 A 근방에서 점을 항상 찾을 수 있다면 연속하는 것
우리 주변에는 아주 일상적으로 사용하고 접하지만 정확하게 설명하려고 할 때 어려운 것이 종종 있습니다. 예를 들어 ‘전기의 정체는 무엇인가’ 혹은 ‘돈의 가치는 어디에서 나오는가’ 같은 것입니다. 아주 흥미로운 질문들이죠.수학에서도 이러한 것을 찾아볼 수 있습니다. 특히 “연속적으로”라는 표현은 구어적으로도 많이 쓰입니다. “으로 수렴한다”보다 덜하기는 하지만 충분히 많이 쓰는 표현이고, ‘점근선’이라는 단어는 일상적으로 쓰이지는 않지만 중학교 1학년의 반비례 그래프에서부터 볼 수 있고, 고등학교 1학년 유리함수 단원부터 직접적으로 들을 수 있는 표현입니다.일상적으로 사용하지만 곰곰히 생각해보면 애매모호한 것이 이런 부분들인데요, 가끔 이런 지점에 꽂혀 질문하는 학생들을 만나곤 합니다.“서로 다른 두 점은 분명히 그 사이가 떨어져 있는 것이 당연한데, 그런 점들로 직선이 만들어진다는 게 말이 되나요?”“수렴한다는 것은 결국 실제로 그 수가 되지는 못하고 가까워만 진다는 건데, 그 말은 어찌되었든 수렴값까지의 차이가 항상 존재한다는 말이잖아요. 그러면 안 되지 않나요?”그리고 이런 질문을 하는 학생은 누구나 쉽게 가질 수 없는, 중요한 수학적 재능을 타고난 학생들입니다. 이러한 시각으로 수학을 본다면 처음에는 시간이 걸리기는 하겠지만 수학에 대한 본질적인 이해가 깊어지기에 장기적으로는 그 응용력이나 이해력의 범위가 크게 차이날 정도로 성장하게 됩니다.일단 ‘연속이다’라는 의미를 생각해봅시다. 아직 어린 학생들을 위해 수학적 표현을 줄이고 생각하자면, 어떤 선이 연속적
-
학습 길잡이 기타
9세기 이슬람 학자가 사인·코사인·탄젠트 공식화
천동설을 믿은 고대 그리스인은 별과 행성의 움직임을 설명하기 위해 정교한 수학적 도구를 개발했습니다. 그 과정에서 탄생한 것이 바로 삼각비입니다.당시 농업을 위해 홍수의 범람을 예측하려던 지도자들은 별의 움직임을 연구하는 데 큰 관심을 가졌습니다. 그러나 구 전체를 직접 측정하는 것은 불가능했고, 관측으로 얻을 수 있는 것은 각도뿐이었습니다. 사실 삼각비는 그리스 시대 이전에도 고대 이집트와 바빌로니아에서 이미 사용하고 있었습니다. 피타고라스 역시 삼각비와 관련한 연구를 진행했으며, 이는 피타고라스 정리로 잘 알려져 있습니다. 이 정리는 직각삼각형에서 빗변의 제곱이 다른 두 변의 제곱의 합과 같다는 내용을 담고 있습니다.기하학을 집대성한 유클리드는 삼각형을 철저히 연구했습니다. 삼각형의 여섯 요소인 세 각과 세 변의 길이를 알아낼 수 있는 방법을 찾기 위해 합동과 닮음에 관한 정리를 정리한 <유클리드 원론>을 저술했습니다.히파르코스 시대에는 필요한 계산을 지원하기 위해 각도와 현의 길이를 표현한 표, 즉 현표를 제작했습니다. 히파르코스의 이러한 노력은 삼각비가 실용적 수학 도구로 자리 잡는 데 기초를 제공했습니다. 히파르코스의 제자인 클라우디우스 프톨레마이오스는 이러한 연구를 더욱 심화해 삼각비의 이론을 확장했습니다. 그는 저서 <알마게스트>에서 1도 간격의 사인 비율표를 작성해 천문학자들이 보다 정밀하게 천체의 위치를 계산할 수 있도록 도왔습니다.9세기 이슬람 천문학자 알 바타니는 삼각법을 체계적으로 발전시킨 중요한 인물로, 그의 연구는 수학과 천문학의 발전에 크게 기여했습니다. 그는 저서 <별들의 운행에
-
대학 생글이 통신
수학 학원에 다녀도 점수 안 오르는 이유
수학은 처음부터 차근차근 실력을 쌓아가지 않으면 정말 쉽지 않은 과목입니다. 이 때문에 많은 학생이 중도에 수학을 포기하고 ‘수포자’가 되곤 합니다. 저도 고등학교 2학년까지 수학 내신이 3~4등급이었습니다. 하지만 고등학교 3학년 때 대입 정시를 준비하면서 수학을 집중적으로 열심히 공부했습니다. 그 결과 저에게 맞는 공부법을 찾게 되었죠. 제가 고민하고 깨달았던 내용을 얘기해보려고 합니다.무엇보다 수학은 ‘혼자 하는’ 과목이라는 점을 기억해야 합니다. 다들 수학 학원에 많이 다닐 텐데 수학이 혼자 하는 과목이라니 이해하기 힘들 것입니다. 저도 수학 학원을 수도 없이 다녔습니다. 하지만 수학 실력이 좋아지지는 않았습니다. 왜 그랬을까요?중소형 학원이든 대형 학원이든 학원은 학생 한 명을 집중해서 봐줄 수 없습니다. 학생들을 실력에 따라 나눠 가르치기도 하지만, 그 또한 한계가 있습니다. 수학은 같은 문제도 풀이 방식이 여러 가지인 데다, 같은 문제를 틀려도 학생마다 틀리는 이유가 제각각입니다. 일반 학원에서 그런 세심한 부분까지 다 지도해주기는 쉽지 않습니다. 그러니 학원에 다니는 것만으로는 수학 성적을 크게 향상시키기 어려운 것이죠.또 한 가지 문제는 학원의 수업 방식입니다. 특히 대형 학원은 선생님이 판서하며 문제 푸는 방식을 설명하고, 학생들에게 숙제를 내줍니다. 강의 내용도 학생 개개인의 수준에 맞춰져 있지 않음은 물론입니다. 앞서 수학은 혼자 하는 과목이라고 했는데, 이렇게 수업하는 학원에서는 자기 스스로 공부할 시간이 많지 않습니다. 확실하게 이해하고 내 것으로 만들 시간이 부족하다는 얘기죠.만약 수학을 어디서
-
학습 길잡이 기타
아킬레우스가 거북이를 못 이기는 이유 '제논의 역설'
무한이라는 것이 얼마나 흥미로운 것인지 수식어를 고르려다 결국은 정하지 못했습니다. 그렇습니다. 학생들 중 얼마나 제 마음을 이해할지 모르겠지만, 무한이란 그런 것입니다. 무한이 수학적으로, 논리적으로 적용되는 결과들은 인간의 직관과 다르게, 어떨 때는 반대로 도출됩니다. 무한이 흥미로운 이유는 많지만 그러한 이유를 종합한다면 결국 이 이유로 귀결된다고 생각합니다.인간의 인식이란 기본적으로 유한하며 한 번에 인식할 수 있는 수 자체도 많지 않습니다. 조금씩 다르게 느낄 수도 있지만, 일반적으로는 5개를 넘어가는 물건은 한 번에 직관적으로 인식하기 어렵습니다. 책상에 놓인 6개의 볼펜을 볼 때 자신의 인식을 잘 더듬어보면 3개와 3개로 묶어 인식하거나, 2개짜리 묶음 3개로 인식하고 있는 걸 떠올릴 수 있습니다.볼펜을 세기 쉽게 잘 늘어놓는 게 도움이 될 수 있겠네요. 하지만 여전히 머릿속에 아주 당연한 듯이 직관적으로 그 개수가 찍혀 들어오지 않는다는 것을 느낄 수 있을 겁니다. 우리는 이 과정이 워낙 익숙하고 빠르기에 전혀 어려움을 느끼지 못할 뿐이죠. 컴퓨터가 아무리 복잡한 계산할 수 있다 하더라도 결국 1+1의 연속으로 이루어지는 것이고 그 간극이 워낙 짧아 우리가 불편을 느끼지 못하는 것과 같습니다.그래서 어떤 것이 무한히 많다거나 어떤 계산을 무한하게 해나간다는 것은 우리의 직관과 전혀 어울리지 않습니다. 우리가 무한하다는 것을 인식하는 과정은 10개 다음에 또 10개가 있고, 그다음에 10개가 있는데 이것이 끊이지 않고 계속해서 이뤄지는 과정입니다.무한 자체가 인식되는 것이 아닌, 유한적 확장을 그저 마무리하지 않는 것으로 인식하는 것이