#수학
-
학습 길잡이 기타
위상기하학에선 접시와 컵이 다 같은 모양이죠
지난 생글생글 878호에서 비유클리드기하학을 소개하며 더 많은 기하학이 있다고 했는데요, 오늘은 언급한 것처럼 좀 더 다양한 기하학을 이야기하도록 하겠습니다.보통 우리는 정해진 규칙 안에서 사고를 전개하는 데 익숙합니다. 특히 수학 문제를 풀 때 그렇죠. 하지만 일부 선생님은 수학 문제를 직접 만들어보라고 권하기도 합니다. 한편 어떤 수학 문제는 그 문제에서만 사용되는 특정한 조건이나 기호를 포함하기도 하죠. 이런 상황은 여러분에게 새로운 고민거리를 안겨주기도 하지만, 동시에 우리가 어디까지, 무엇을 할 수 있는지 생각해보는 실마리가 되기도 합니다.기하학에서도 마찬가지입니다. 이미 소개했듯이, 유클리드기하학이란 거의 완벽에 가까운 체계가 있고 이 규칙을 지키며 생각과 추론을 이어나갈 수 있습니다. 그러나 우리가 직접, 이 규칙을 수정할 수도 있다는 것이죠. 사실 기하학에서는 이 사실을 깨닫는 것 자체가 아주 오래 걸린 일이었습니다.첫 번째로 사영기하학을 소개할까 합니다. 국내에는 많이 알려져 있지 않지만 수학 관련 교양서적에서 꾸준히 찾아볼 수 있는 기하학인데요, 위에서도 언급했지만 새로운 규칙을 만들어야 한다는 점에서 이 기하학은 ‘무한하게 먼 곳’을 실제로 있는 것처럼 가정하고 논리를 전개합니다. 이 말은 한 쌍의 평행선이 있을 때 그 두 선의 교점이 아주 먼 곳에 ‘있다’라고 가정한다는 의미입니다. 당연한 이야기지만 옆에 보이는 그림과 같이, 2개 직선은 하나의 교점을 가집니다.이때 교점 A는 두 직선이 평행선에 가까워지면서 점점 오른쪽으로 밀려나는데, 결국 평행선이 되는 순간 교점 A는 갈 곳이 없어지죠. 그런데 오
-
학습 길잡이 기타
우리 인생에 하나뿐인 제곱수의 해 '2025'
2025년 을사년 뱀띠의 해가 시작된 지 벌써 한 달이 지났습니다. 2025년은 수학과 관련이 많은 수학의 해인 것 같습니다. 2025년이 시작하자마자 SNS와 각종 수학 커뮤니티에서는 2025를 수학으로 이야기하는 글이 많이 올라왔는데, 2회에 걸쳐 이에 대한 이야기를 소개하려고 합니다.2025는 452 = 2025이므로 어떤 정수의 제곱이 되는 정수, 즉 제곱수입니다. 442=1936, 462=2116이니까 어떻게 보면 2025년은 우리의 인생에서 하나밖에 없는 제곱수인 해일 수 있습니다.2025는 신기한 수입니다. 2025를 절반으로 나누어 앞자리 수 20과 뒷자리 수 25를 생각합니다. 20과 25를 더하면 45가 되고, 이 45를 제곱하면 2025가 됩니다. 즉, 2025는 절반으로 나누어 더한 후 제곱하면 원래의 수가 됩니다. 이를 식으로 나타내면 다음과 같습니다.20+25=45, 452=2025여기서 45와 같은 수를 ‘카프리카 수’라고 하는데, 일반적으로 어떤 수의 제곱수를 두 부분으로 나누어 더했을 때 다시 원래의 수가 되는 수를 인도의 수학자 카프리카(D. R. Kaprekar, 1905~1986)의 이름을 붙여 ‘카프리카 수’라고 합니다. 이 카프리카 수에는 다음과 같은 유래가 있습니다.인도의 어느 지역에 있는 철도의 선로 옆에 “3025km”라고 적힌 이정표가 있었습니다. 그런데 어느 날 심한 폭풍우로 인해 이정표가 쓰러지면서 ‘3025’가 ‘30’, ‘25’와 같이 절반으로 나뉘게 되었습니다. 마침 이곳을 지나던 인도의 수학자 카프리카가 30+25=55이고, 552=3025라는 점을 발견했습니다. 그 후 사람들은 55와 같이 어떤 수의 제곱수를 두 부분으로 나누어 더했을 때 다시 원래의 수가 되는 수를 카프리카 수로 부르게 되었습니다.카프리카 수 중에서 두 자리
-
대학 생글이 통신
예비 고3, 방학이 수학 성적 올릴 마지막 기회
지난 14일 대학수학능력시험이 있었습니다. 고등학교 3학년 학생들은 오랫동안 준비해온 수능을 끝내고 약간의 해방감을 맛봤을 것입니다. 반면 이제 고3이 되는 학생들은 이제부터 진짜 수험 생활의 시작이라고 할 수 있습니다. 새로운 출발선에서 어떻게 시작해야 할지 고민하는 학생도 많을 것입니다. 그중에서도 적지 않은 학생이 어려움을 겪는 수학 공부에 대해 이야기해보려고 합니다.고3 1월에 사설 인터넷 강의 수강권부터 끊는 학생이 많은데, 저는 별로 추천하지 않습니다. 인강은 내가 부족한 부분을 보완해야 할 때 도움을 받는 수단으로 활용하는 것이 좋습니다. 인강 수강권을 끊더라도 처음부터 끝까지 보는 데 집착하지 말고 필요한 부분만 골라서 보기를 추천합니다. 웬만한 내용은 EBS 인강에서도 충분히 배울 수 있습니다. 꼭 값비싼 사설 인강을 들어야 한다고 생각하지는 않습니다.수학 성적을 올리려면 절대적 공부 시간을 최대한 확보해야 합니다. 이런 습관을 들이기에 가장 좋은 시기가 겨울방학입니다. 고3이 되기 전 마지막 방학인 만큼 놀고 싶은 마음을 충분히 이해합니다. 하지만 적어도 1월 중순부터는 충분히 긴 시간을 수학에 투자하는 습관을 들이라고 당부하고 싶습니다.그럼 수학에 얼마나 많은 시간을 투입해야 할까요? 수학에 약점이 있다고 생각한다면 전체 공부 시간의 50% 이상은 수학에 투자해야 합니다. 1월에는 개념서를 보면서 시작하는 것이 좋습니다. 개념서를 보며 이해가 안 되는 부분이 있다면 인강을 활용하면 됩니다. 중요한 내용을 노트에 정리해두는 것도 좋지만, 노트 정리 자체에 매몰될 필요는 없습니다. 개념서에 나오는 문제는 하나도 안 틀리고 다 풀
-
학습 길잡이 기타
17세기 등장…수의 배열 통해 복잡한 계산 처리
2022년 수학 교육과정에서 주목할 이슈 중 하나는 행렬이 다시 포함되었다는 점입니다. 한동안 제외됐던 행렬이 교육과정에 재도입된 데는 분명한 이유가 있을 것입니다. 오늘은 행렬이 처음 등장하게 된 배경부터 최근 다시 중요해진 역사적 이유까지 살펴보고자 합니다.미지수의 개념이 도입되기 전, 사람들은 방정식을 풀기 위해 숫자의 나열을 활용한 방법을 사용했습니다. 이때 숫자들을 배열해 문제를 푸는 과정에서 자연스럽게 행렬의 개념이 도입되었는데, 어떻게 보면 이것이 행렬의 시작점이라고 할 수 있습니다. 수의 나열을 통해 복잡한 계산을 체계적으로 처리할 수 있었고, 방정식의 해를 구하는 데 큰 도움이 되었습니다.행렬의 개념도 17세기에 등장하게 됩니다. 당시 수학자들은 방정식을 풀고 연립방정식을 해석하는 과정에서 더 효율적인 방법이 필요하다고 느꼈습니다. 특히 여러 변수와 방정식을 한꺼번에 해결하려면 단순한 수의 나열만으로는 한계가 있었기에 숫자나 값을 배열해 체계적으로 연산할 수 있는 도구가 필요했습니다. 이를 위해 숫자들을 행과 열로 정리해놓은 형태가 바로 행렬입니다. 행렬은 수의 배열을 통해 복잡한 계산을 간단하게 처리할 수 있는 방식으로, 선형 변환이나 선형 연립방정식의 해를 구하는 데 유용했습니다. 이처럼 행렬은 단순한 계산을 넘어 여러 방정식을 동시에 풀기 위한 효율적 도구로 자리 잡았고, 이후 다양한 수학적·과학적 문제를 해결하는 데 필수 개념으로 발전했습니다.행렬의 큰 장점 중 하나는 복잡한 연산을 쉽게 처리할 수 있다는 점입니다. 숫자들을 정해진 형식으로 정리해 나열하면, 여러 방정식을 한꺼번에 계산하거나 다양
-
학습 길잡이 기타
포물선·타원·쌍곡선 모두 x와 y 이차식 표현 가능
안녕하세요! 오늘은 수학에서 매력적인 주제 중 하나인 이차곡선에 관해 이야기해보려 합니다. ‘이차곡선’이란 이름이 아직은 낯설게 들릴 수 있지만, 사실 중학교와 고등학교에서 접하는 곡선들이 바로 이차곡선에 해당합니다. 예를 들어, 중학교 3학년 때 배우는 포물선(이차함수)부터 시작해 고등학교 1학년 과정에서 등장하는 원, 그리고 선택과목인 기하에서 만나게 될 포물선, 타원, 쌍곡선이 모두 이차곡선입니다.수학자들이 이들을 한 그룹으로 묶어 ‘이차곡선’이라고 부르는 이유는 이 곡선들을 모두 x와 y의 이차식으로 표현할 수 있기 때문입니다. 이렇게 모양이 다양한 곡선이 서로 연결된 점이 있다는 사실이 꽤 흥미롭죠.오늘은 이차곡선의 정의와 각각의 특징을 살펴보면서 함수식을 몰라도 이차곡선이 왜 독특한 주제인지 알아보려고 합니다. 또한 기하학적으로 이 곡선들이 어떻게 나타나는지 함께 살펴볼 텐데, 이를 통해 수학적 개념을 보다 넓은 시각에서 바라보고, 수학이 서로 어떻게 연결되어 있는지 확인할 수 있을 것입니다.이 곡선들을 하나로 묶어 바라보기 시작한 건 상당히 오래되었습니다. 그리스 수학자 아폴로니우스가 그 주인공으로 알려져 있는데, 이 곡선들을 하나의 원뿔에서 모두 발견할 수 있기 때문에 이러한 이차곡선을 ‘원뿔곡선’이라고 부르기도 합니다.조금 인위적이기는 하지만, 두 원뿔이 서로 꼭짓점을 맞대고 대칭으로 놓인 원뿔이 있다고 상상해봅시다. 그러니까 y=x 그래프를 y축을 축으로 회전시킨 회전체라고 생각하면 편하겠네요. 이제 상상 속 이 회전체를 밑면과 평행하게 자른다면 그 단면은 무엇이 될까요? 상상을 잘 따라오고
-
학습 길잡이 기타
시·소설 속 수학 요소, 강력한 의미 전달 장치죠
우리나라 소설가 한강이 2024년 노벨 문학상을 받았습니다. 이는 한국인으로서는 최초의 노벨 문학상이자, 2000년 고(故) 김대중 전 대통령이 노벨 평화상을 받은 이후 두 번째 노벨상 수상입니다. 이번 수상으로 한국 문학이 세계 무대에서 다시금 조명받게 되었고, 한강 작가는 세계적 작가로서 한국 문학의 위상을 높이는 계기가 되었습니다.이번 기회에 한강 작가의 작품 등 문학작품을 읽어보게 되었습니다. 그런데 아무래도 필자가 수학 교사이다 보니 문학작품을 읽으면서 수학적 요소를 담거나 수학을 소재로 한 작품에 궁금증이 생겼습니다. 같이 한번 살펴봅시다.문학작품에서 수학적 요소는 작가가 자신의 상상력을 발휘해 표현하고자 하는 예술적 요소와 잘 어울립니다. 그리고 문학작품에서 말하고자 하는 강력한 의미를 전달하는 데 사용되기도 합니다.<플랫랜드(flatland)>는 1884년에 영국의 신학자이자 교육자이던 에드윈 A. 애보트(Edwin A. Abbott, 1383~1926)가 지은 수학 소설입니다. 이 소설에서는 2차원과 3차원 세계 간 충돌을 다루면서 계급사회의 문제를 수학적 개념과 함께 풍자적으로 다룹니다. 소설은 2차원의 존재인 정사각형의 시점으로 이야기를 전개합니다. 평면의 나라에서 직선, 삼각형, 원 등의 여러 가지 도형이 살아가는 이야기와 평면의 나라를 벗어나 점의 나라, 선의 나라, 공간의 나라를 여행하는 과정을 그리고 있습니다.수학의 개념을 바탕으로 계급사회의 문제를 기발하게 연결 지어 표현한 이 작품을 꼭 한번 읽어보길 권합니다.또 하나의 작품으로 조너선 스위프트(Jonathan Swift, 1667~1745)가 쓴 소설 <걸리버 여행기>가 있습니다. 이는 1726년에 발표한 소설로, 인간의 본성
-
학습 길잡이 기타
점 A 근방에서 점을 항상 찾을 수 있다면 연속하는 것
우리 주변에는 아주 일상적으로 사용하고 접하지만 정확하게 설명하려고 할 때 어려운 것이 종종 있습니다. 예를 들어 ‘전기의 정체는 무엇인가’ 혹은 ‘돈의 가치는 어디에서 나오는가’ 같은 것입니다. 아주 흥미로운 질문들이죠.수학에서도 이러한 것을 찾아볼 수 있습니다. 특히 “연속적으로”라는 표현은 구어적으로도 많이 쓰입니다. “으로 수렴한다”보다 덜하기는 하지만 충분히 많이 쓰는 표현이고, ‘점근선’이라는 단어는 일상적으로 쓰이지는 않지만 중학교 1학년의 반비례 그래프에서부터 볼 수 있고, 고등학교 1학년 유리함수 단원부터 직접적으로 들을 수 있는 표현입니다.일상적으로 사용하지만 곰곰히 생각해보면 애매모호한 것이 이런 부분들인데요, 가끔 이런 지점에 꽂혀 질문하는 학생들을 만나곤 합니다.“서로 다른 두 점은 분명히 그 사이가 떨어져 있는 것이 당연한데, 그런 점들로 직선이 만들어진다는 게 말이 되나요?”“수렴한다는 것은 결국 실제로 그 수가 되지는 못하고 가까워만 진다는 건데, 그 말은 어찌되었든 수렴값까지의 차이가 항상 존재한다는 말이잖아요. 그러면 안 되지 않나요?”그리고 이런 질문을 하는 학생은 누구나 쉽게 가질 수 없는, 중요한 수학적 재능을 타고난 학생들입니다. 이러한 시각으로 수학을 본다면 처음에는 시간이 걸리기는 하겠지만 수학에 대한 본질적인 이해가 깊어지기에 장기적으로는 그 응용력이나 이해력의 범위가 크게 차이날 정도로 성장하게 됩니다.일단 ‘연속이다’라는 의미를 생각해봅시다. 아직 어린 학생들을 위해 수학적 표현을 줄이고 생각하자면, 어떤 선이 연속적
-
학습 길잡이 기타
9세기 이슬람 학자가 사인·코사인·탄젠트 공식화
천동설을 믿은 고대 그리스인은 별과 행성의 움직임을 설명하기 위해 정교한 수학적 도구를 개발했습니다. 그 과정에서 탄생한 것이 바로 삼각비입니다.당시 농업을 위해 홍수의 범람을 예측하려던 지도자들은 별의 움직임을 연구하는 데 큰 관심을 가졌습니다. 그러나 구 전체를 직접 측정하는 것은 불가능했고, 관측으로 얻을 수 있는 것은 각도뿐이었습니다. 사실 삼각비는 그리스 시대 이전에도 고대 이집트와 바빌로니아에서 이미 사용하고 있었습니다. 피타고라스 역시 삼각비와 관련한 연구를 진행했으며, 이는 피타고라스 정리로 잘 알려져 있습니다. 이 정리는 직각삼각형에서 빗변의 제곱이 다른 두 변의 제곱의 합과 같다는 내용을 담고 있습니다.기하학을 집대성한 유클리드는 삼각형을 철저히 연구했습니다. 삼각형의 여섯 요소인 세 각과 세 변의 길이를 알아낼 수 있는 방법을 찾기 위해 합동과 닮음에 관한 정리를 정리한 <유클리드 원론>을 저술했습니다.히파르코스 시대에는 필요한 계산을 지원하기 위해 각도와 현의 길이를 표현한 표, 즉 현표를 제작했습니다. 히파르코스의 이러한 노력은 삼각비가 실용적 수학 도구로 자리 잡는 데 기초를 제공했습니다. 히파르코스의 제자인 클라우디우스 프톨레마이오스는 이러한 연구를 더욱 심화해 삼각비의 이론을 확장했습니다. 그는 저서 <알마게스트>에서 1도 간격의 사인 비율표를 작성해 천문학자들이 보다 정밀하게 천체의 위치를 계산할 수 있도록 도왔습니다.9세기 이슬람 천문학자 알 바타니는 삼각법을 체계적으로 발전시킨 중요한 인물로, 그의 연구는 수학과 천문학의 발전에 크게 기여했습니다. 그는 저서 <별들의 운행에