과학과 놀자
-
과학과 놀자
지구 공전궤도 근처 소행성은 발견된 것만 2만5000여개
"소행성이 지구에 충돌하면 원자폭탄 몇 만 배 규모의 피해를 야기한다!" 이런 제목의 뉴스와 신문기사는 1년에 몇 차례나 등장한다. 어떤 사람들은 이런 기사를 보고 사실을 확인하기 위해 한국천문연구원에 문의한다. 반면 매번 '양치기소년'에게 속았던 일부 사람은 진위 여부를 확인하지 않은 채 믿지 않으려고 할지도 모른다. 그런데 과연 정말 소행성이 지구에 충돌할 것인가? 미국 항공우주국(NASA)라는 이름의 소행성 궤도 분석 프로그램을 통해 지금까지 인류가 발견한 2만5000여 개의 모든 근(近·가까운)지구소행성의 향후 100년간 지구 충돌확률을 자동으로 계산하고 있다.계산 결과에 따르면 2021년 3월 현재 가장 충돌 확률이 높은 소행성은 ‘2010 RF12’라는 이름(임시번호)을 가진 천체로 2095년 9월 5일 충돌 확률은 4.6%다. 두 번째로 높은 소행성 ‘2017 WT28’의 2104년 11월 24일 지구 충돌 확률은 1.1%, 세 번째는 ‘2020 VW’라는 이름의 소행성으로 2074년 11월 2일 지구 충돌 확률은 0.37%다. 소행성의 지구 충돌 확률은 낮아이 세 가지 경우만 보더라도 소행성의 지구 충돌 확률은 지극히 낮다는 사실을 확인할 수 있다. 또한 소행성의 궤도는 처음 발견하고 난 뒤 지속적인 후속 관측을 통해 보다 정밀해지는데, 이 3개 소행성의 이름(임시번호) 앞의 네 자리 숫자는 발견 연도다. 즉 각각 2010년, 2017년, 2020년에 처음으로 발견된 소행성이기 때문에 추가 관측이 진행됨에 따라 충돌 확률이 변할 가능성은 크다. 하지만 그럼에도 불구하고 설령 이들이 지구에 부딪히더라도 그 피해는 거의 없을 것이다. 왜냐하면 각각의 크기가 단지 지름 약 7m, 8m, 7m밖에 되지 않기 때문이
-
과학과 놀자
공기로부터 쌀과 빵을 생산한 기술 '암모니아 합성'
원유를 끓는점 차이로 분리·정제해 나프타, 휘발유, 경유, 등유, 아스팔트 등을 생산하는 것이 정유산업이라면, 정유산업에서 나온 나프타 또는 천연가스를 가지고 다양한 물성(물질의 성질)의 재료를 만드는 분야가 석유화학산업이다. 우리 소지품의 70% 이상이 석유화학 관련 제품이지만, 우리에게 석유화학산업은 낯선 느낌이다. 석유화학산업의 사업 범위가 넓고, 우리와 간접적으로 연결돼 있기 때문에 명확한 이미지를 그리기 힘들 수 있다. 우리 삶에 가까이 있지만 멀게 느껴지는 석유화학산업에 대해 알아보자. 새로운 재료를 만들다정유산업에서 끓는점 100도 이하인 탄화수소 혼합물을 모아 경질나프타를 생산하며, 보통 석유화학산업의 원료로 사용한다. 석유화학산업에서 탄소 개수가 2~5개인 경질나프타를 높은 온도(800~850도)에서 열분해해 수소 및 탄소 개수가 1~10개 이상까지 다양한 성분을 얻을 수 있다. 대표적인 열분해 생성물은 에틸렌, 프로필렌, 부타디엔, 벤젠, 톨루엔, 자일렌, 중질유분 등이 있다. 혼합물을 정제해 각각 99% 이상의 순수한 물질(단량체·monomer)을 얻으며, 레고처럼 이들을 같은 혹은 다른 성분들과 조립해 더 분자량이 큰 물질(고분자·polymer)을 합성한다. 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리염화비닐(PVC) 등 이렇게 합성한 고분자들은 쌀 알갱이 형태로 다른 회사에 납품되기 때문에 ‘산업의 쌀’로 부르기도 한다. 석유화학제품은 소비자가 바로 사용할 수 없지만, 가공을 통해 우리 삶에 밀접한 자동차, 전자제품, 섬유, 식품용기 재료로 활용된다. 천연재료(철, 알루미늄, 목재, 면, 양모 등)를 대체하기 위해 가격이 저렴하고 물성이 좋은
-
과학과 놀자
식물의 키, 성장 호르몬 '지베렐린'이 결정한다
식물은 종자에서 싹이 트고 자라서 꽃이 피고 열매를 맺으면서 일생(life cycle)을 마친다. 이 과정에는 많은 종류의 식물호르몬이 관여한다. 식물호르몬은 식물체 내에서 생산돼 미량으로도 다양한 생리작용을 조절하는 유기화합물이다. 지금까지 밝혀진 식물호르몬은 옥신, 사이토키닌, 지베렐린, 아브시스산, 에틸렌, 브라시노스테로이드, 살리실산, 자스몬산 등 10종이 있다. 이 가운데 지베렐린(gibberellic acid, GA)은 식물의 키(신장)를 조절하고 종자발아 촉진 등에 관여하는 물질이다.사람에게도 성장호르몬이 있어 키가 작은 어린이를 크게 하는 데 사용하듯이 식물에서도 전통육종에 의한 방법 외에 화학물질, 유전자변형으로 키를 조절할 수 있다. GA 발견의 역사, 생체에서 만들어지는 과정(생합성 과정), 농업적 이용 그리고 분자육종에 대해서 알아본다. 지베렐린(GA)의 발견GA 연구는 1920년대 일본의 식물병리학자에 의해 시작됐다. 벼농사를 위한 못자리에서 벼를 연약하고 웃자라게 하는 병의 원인을 규명하려는 것이 시작이었다. 당시 벼가 웃자라서 농사에 피해를 주기 때문에 벼 키다리병으로 불렸는데, 이를 예방하기 위해 못자리용 벼 종자를 반드시 소독을 해야 했다. 지금은 벼농사용 묘를 공장에서 건전하게 생산하고 있어 벼 키다리병을 볼 수 없다. 못자리 농사가 반(半)농사라 할 정도로 묘를 튼튼하게 키우는 것은 지금도 중요하다. 도쿄대 농화학자들은 많은 시행착오 끝에 벼를 웃자라게 하는 원인이 벼에 감염된 곰팡이(Gibberella fujikuroi)가 생산하는 물질(독소)인 것을 발견하고 1938년 GA를 분리하게 된다.초기의 GA는 몇 종류의 곰팡이에서 발견되다가 1950년대 식물에 보편적으로 존재하
-
과학과 놀자
인공지능은 인공신경그물망을 쌓은 복잡계처럼 작동케 해
'스타워즈: 더 만달로리안'을 직접 보지 않더라도 우리는 이 TV 드라마 시리즈가 얼마나 재미있는지를 소문을 통해 안다. 사전을 찾아보면 '사람들 입에 오르내려 전하여 들리는 말'을 일컬어 소문이라고 한다. 그렇다, 사람들 사이에 전달되는 일이 없다면 우리는 알 길이 없다. 사람들이 말로 전달하는 것은 무엇일까? 바로, 정보(information)다. 사람들을 개개의 '생각하는 입자'로 본다면 이들이 상호작용하면서 정보를 퍼뜨리는 셈이다. 정보가 퍼지느 과정은 이들 사이에 사회 관계망(그물)에 따라 다르게 보여진다.친구가 무척 많은 사람이 정보를 퍼뜨리는 것과 여러 이유로 주변에 친구가 별로 없는 사람이 정보를 퍼뜨리는 것은, 소문의 초기에 아주 다르게 나타난다. 친구가 적거나 소통을 적게 하는 사람으로부터 소문이 시작됐지만, 어느 시점에 친구가 많은 사람에게 소문이 도달해야만 그때부터 소문이 퍼지는 속도는 걷잡을 수 없게 된다. 소문은 어떻게 퍼지는가물론 각각의 사람이 다른 사람들과 어떻게 관계를 맺고 영향을 미치는지를 이해한다고 해도 사람들이 모여서 이루는 사회현상 전체를 바로 이해하기는 어렵다. 한 가지 물질을 이해하기 위해 아주 작은 단위(원자)로 쪼개어 그들 사이의 상호작용을 이해한다고 할지라도 물질의 특징 전부를 알 수는 없는 것과 같은 이치다. 그러나 개별 입자를 바라보는 시각에서 몇 발자국 물러나 이들이 어떻게 전체를 조직하는가(짜임)를 그려내면 비로소 전체의 거동을 이해할 수 있다. 나무를 알고 나무들이 어떻게 심어져 있는지를 안다면, 이들이 이루는 숲의 형상을 이해할 수 있는 것과 마찬가지다.개개 입자의 거동과 이들
-
과학과 놀자
끓는점 차이 이용해 원유를 LPG·휘발유·경유 등으로 분리
화학공학과에서 자주 듣는 질문 중 하나는 '석유는 언제쯤 고갈될까'이다. 흥미로운 사실은 2018년 원유의 가채연수(확인 매장량을 현재의 연간 생산량으로 나눈 값으로 앞으로 채굴 가능한 기간을 의미)는 50년인데, 30년 전에 예상한 가채연수는 43년이었다. 매년 엄청난 양의 석유가 사용되지만, 매장량은 오히려 늘어난 이유는 무엇일까? 매장량의 간단한 정의는 '불확실성 없이 검증된 기술로 상업적으로 생산할 수 있는 양'이다. 반면, 시추로 확인했지만 상업적으로 생산하기 힘든 경우 '발견 잠재 자원량'이라고 하며, 석유가 있을 가능성은있지만 시추로 확인하지 못한 경우를 '탐사 자원량'이라고 한다.두 자원량은 매장량에 포함되지 않지만 유가 상승, 정부 규제 완화, 또는 생산기술 발전에 따라 매장량으로 편입될 수 있다. 게다가 석유자원 개발 회사가 원활한 회사 운영을 위해 40~50년간의 매장량을 확보하기 때문에 그동안 가채연수는 40~50년으로 유지돼 왔다. 석유란 무엇일까석유(petroleum)는 암석을 뜻하는 그리스어 petro와 기름을 뜻하는 라틴어 oleum이 합쳐져 만들어졌다. 정제하지 않은 석유를 원유라고 하며, 이를 증류와 같은 정유공정을 통해 만든 제품을 석유제품이라고 한다. 석유는 탄소 87~83%, 수소 14~10%, 질소 2.0~0.1%, 산소 1.5~0.05%, 황 6~0.05%, 금속(바나듐, 니켈, 철 등) 1000ppm 이하 질량비율로 이루어져 있다. 석유는 액체이므로 수송 및 사용이 용이하고 열량이 높고 불순물이 적어 완전연소가 가능한 장점이 있다. 정유산업: 끓는점 차이로 제품을 나누다정유산업은 정육점과 비슷한 특징을 가진다. 정육점에서는 도축된 소를 뼈와 근육을 기준으로 안심, 등심
-
과학과 놀자
영화 '마션'처럼 우주기지에서 감자를 기를 수 있을까
우리는 우주시대에 살고 있다고 해도 과언이 아니다. 인공위성이 보내주는 GPS(위치추적기)를 통해 자동차 네비게이션에서 목적지를 쉽게 찾아갈 수 있다. 인공위성을 넘어 가까운 시일에 일반인도 우주여행을 할 수 있을 것으로 기대된다. 짧은 기간의 우주여행을 위해 필요한 식량은 우주식품으로 가능하지만 수개월 이상 장기간 우주비행사가 우주기지에 체류할 때는 현지에서 식량을 조달해야 한다. 필요한 많은 양의 식량을 우주선에 싣고 가기는 어려움이 많기 때문에 우주에서 식물을 재배해서 식량을 조달해야 하는데, 과연 우주기지에서 식물을 재배할수 있을까.식물이 자라기 위해서는 빛, 이산화탄소, 물을 이용해서 광합성을 해야 한다. 광합성을 위해서 적정한 온도도 중요하다. 달, 화성 등 위성과 행성은 일교차가 심하고 온도가 영상 50도 이상이나 영하 100도 이하로 내려갈 수 있다. 아직까지 우주 행성에 물이 존재한다는 확실한 증거는 없다. 여러 가지 우주환경을 고려할 때 행성에서 직접 식물을 재배하는 것은 불가능하다고 생각한다. 영화 ‘마션(The Martian)’처럼 우주기지 내에서는 식물을 재배할 수 있겠지만 물이 가장 문제가 될 것이다. 선진 우주연구소에서는 우주기지에 어떤 식물이 가장 적합한지 연구하고 있다. 여기서는 우주기지에서 식물 재배와 관련한 우주과학 공상 영화 ‘마션’과 인공 생태계 ‘바이오스피어2(Biospehere2)’에 대해서 알아본다. 영화 ‘마션’ 감독이 고구마를 알았더라면영화 ‘마션’은 화성 탐사에 참여한 우주비행사가 홀로 우주기지에 낙오했다가 생존하는 내용이다. 주인공은 구조대가 도착할 때까지 식량을 확보
-
과학과 놀자
'나비효과' 활용한 코로나19 확산 시뮬레이션 모델…사회적 거리두기 등 방역정책의 효과 과학적으로 증명
신종 코로나바이러스 감염증(코로나19)이 세계를 강타했다. 감염자 수는 한 해가 지난 지금도 줄어들지 않고 여전하다. 감염성 질병은 어떻게 전파되는가? 질병이 감염되고 확산되어 가는 것은 사람들 사이에 소문이 전파되는 것이나 뉴런 사이에서 정보가 퍼져나가는 것과 본질적으로 같은 현상이다. 이들 현상을 하나의 모형으로 만드는 데는 2020년 현재 (1)미분방정식 방법을 사용하거나 (2)복잡계에 기반해서 대용량 슈퍼컴퓨터를 이용하는 방법이 있다. 둘 다 응용수학의 한 갈래인데, 시뮬레이션(시늉내기, 전산모사)을 진행할 때 어디에 초점을 두는가 하는 점이 다르다. 미분방정식을 활용한 질병전파 모델미분방정식 방법을 이용하는 경우는 사회 구성원을 하나의 큰 떼(무리, 덩어리)로 본다. 주로 ‘S-(E)-I-R 모형’을 활용하는데, SEIR는 (정상인)감염 대상군(Suspectible), 질병 노출(Exposed), 감염(Infectious), 회복(Removed)의 영어 단어 앞 글자를 따온 말이다. 미분방정식을 쓴다는 것은 욕조에 물을 채우는 상황에 비유될 수 있다. 감염인구 무리를 하나의 욕조라고 한다면, 여기에 물을 채우는 수도꼭지는 감염률이 된다. 이들 수도꼭지를 열고 닫는 것은 질병의 특징으로서 전염 강도 및 감염인구와 비감염인구의 접촉 수에 의해 결정된다. 그리고 물을 빼는 배수꼭지는 회복률로 비유된다. 이 S-I-R 모형은 1927년 영국 생화학자 W O 커맥과 병리학자 A G 매켄드릭이 질병 유행의 초기 조건과 확산 정도를 예측하기 위해 사용하면서 처음 제안됐다.S-E-I-R 모형은 S와 I 사이에 접촉군 단계 (E)를 추가한 모형이다. 즉 잠복기가 고려되어 있다. 인구 떼(무리)의 상태를 늘림으로써 다양한 모형을 만들거나
-
과학과 놀자
고려시대 우리나라에서도 종종 볼 수 있었던 황홀한 오로라…지구 대기를 교란시켜 통신과 GPS에 영향 주기도
옛날 옛적 멀고 먼 나라에 살던 왕과 왕비가 오랜 기다림 끝에 공주를 얻었다. 그러나 기쁨도 잠시, 생일잔치에 초대받지 못한 마법사가 공주에게 물레에 찔려 죽는다는 무시무시한 마법을 걸었으나 착한 마법사의 도움으로 죽음 대신 깊은 잠에 빠지게 된다…. 누구나 한 번쯤 들어봤을 이 이야기는 그림 동화로 디즈니 만화영화로도 제작된 '잠자는 숲속의 공주'다. 공주의 이름은 바로 오로라, 로마신화에서 새벽의 여신이다. 하늘을 가로질러 너울거리는 빛의 향연일생에 한 번은 보고 싶다는 자연 현상인 오로라도 이 새벽 여신의 이름을 따랐다. 하늘을 가로질러 너울거리는 빛의 향연을 보기 위해 세계 사람들이 캐나다 옐로나이프에 모인다. 운이 좋으면 도착한 당일에도 볼 수 있지만, 며칠 기다려야 할 때도 있다. 오랜 기다림 끝에 마주하는 신비한 ‘초록 커튼’은 사람들 머릿속에 각인될 것이다. 신종 코로나바이러스 감염증(코로나19) 유행으로 해외여행은 꿈도 꿀 수 없는 지금, 우리는 언제쯤 오로라를 볼 수 있을까? 오로라는 초록색일까오로라는 높은 에너지를 가지는 하전입자(전하를 띤 입자)가 자기력선을 따라 지구 대기로 들어오면서 대기 성분과 부딪쳐 빛을 방출하는 일종의 방전 현상이다. 오로라가 발생하는 지구 고층 대기는 주로 산소 원자와 질소 분자로 구성되어 있는데, 이들이 전자와 충돌해 들뜨게 되고 다시 바닥 상태로 천이하면서 방출하는 빛이 바로 오로라다. 강력한 에너지를 가지는 전자는 질소 분자를 이온화하며 지상에서 약 90㎞ 상공까지 떨어지는데 이곳이 오로라의 끝자락이다. 산소 원자는 에너지 준위에 따라 붉은색과 초록색 빛을 방출