과학과 놀자
-
과학과 놀자
말랑해지며 상처를 스스로 메운 뒤 단단해지는 '자가치유 물질'…'구길 수 있는' 자동차와 TV의 소재로 사용 기대
공상과학(SF) 영화 '엑스맨'과 '터미네이터'는 국내에서 큰 사랑을 받은 SF 영화들입니다. 두 영화에서 각각 등장하는 울버린과 T-1000은 지금까지 발표된 수많은 캐릭터 중에서 사람들의 기억에 남은 몇 안 되는 인기 캐릭터입니다. 두 캐릭터의 매력은 외부의 도움 없이 스스로 상처를 복원하는 자가치유(self-healing) 능력을 갖고 있다는 것입니다.그들은 총이나 칼에 맞아도 즉시 회복돼 불사신에 가깝습니다. 아프지 않고 다치지도 않고 더 나아가 죽지 않는 것은 인간이 가지고 싶은 가장 원초적인 욕구입니다. 이런 이유 때문에 이들이 크게 매력적으로 다가오는 게 아닐까 합니다.아쉽게도 인간이 영화와 같은 극적인 자기-치유 능력을 갖는 것은 현재 과학기술로는 어렵습니다. 자가치유 능력은 영화 속 능력만큼 극적이지는 않지만 생물이 무생물과 대비돼 갖는 주요 특징입니다. 자동차 접촉 사고를 내거나 휴대폰을 떨어뜨려 액정이 깨졌을 때 ‘생물처럼 이것들이 스스로 치유되면 어떨까?’ 하는 상상을 해봤을 겁니다. 이 기술은 앞서 언급한 우리의 소망보다 훨씬 우리 가까이에 왔습니다. 실제로 과학자들이 자가치유 물질을 개발하고 있습니다. 액체와 고체의 장점을 동시에 지닌 자가치유 물질자가치유 소재 개발 원리는 액체와 고체의 장점을 동시에 지닌 물질을 만드는 것입니다. ‘부부싸움은 칼로 물 베기다’라는 속담은 ‘부부는 싸워도 쉽게 화해한다’는 뜻입니다. 현대사회에 맞지 않는 이 속담을 꺼낸 이유는 “물을 아무리 칼로 베어도 흉터가 남지 않는다”는 물리적 현상을 독자들에게 오래 기억하게 하기 위함입니다. 칼로 베어낸 공간을 물
-
과학과 놀자
물질이 인체에 닿아 독성을 유발하는 과정을 추적하는 '독성발현경로'…수없이 만들어지는 화합물을 시작단계에서 걸러낼 수 있어
우리는 화학물질과 함께 살아간다. 단 며칠도 화학제품 없이 살아가기 어려울 것이다. 화학물질은 전 세계적으로 8800만 종이 개발됐고, 지금도 12만 종이 상업적으로 유통되고 있다. 우리나라에서도 약 4만 종이 사용되며, 연 1t 이상 사용되는 물질은 1만6000여 종, 총 사용량은 5억t이나 된다. 놀랍겠지만 어느 보고에 따르면 우리가 사는 지구에서는 1년에 100만 종, 환산하면 1시간에 약 1000종의 화학물질이 지금도 새롭게 합성되고 있다고 한다.우리를 둘러싸고 있는 화학물질 중 일부는 그 독성 영향으로 인해 인간과 생태계에 큰 피해를 불러오기도 했다. 국내로만 한정해도 임산부와 영유아에서 폐질환을 유발한 가습기 살균제, 구미 불산 유출사고, 휘발성 유기화합물이 포함된 생리대, 다이옥신 계란 등이 최근 사례다. 화학물질 노출과 인체 건강 관계에 대한 과학적 근거가 축적되고, 우리가 화학물질 노출의 위해성을 점차 이해하게 되면서, 전 세계적으로 화학물질의 독성 평가와 규제에 대한 요구가 높아지고 있다. 그러나 현 상황은 이 요구를 충족하지 못하고 있다. 고비용, 장시간이 소요되는 동물실험 기반의 기존 독성 평가 방법으로는 매일같이 쏟아지는 화학물질을 모두 평가하기에 역부족이기 때문이다. 우리는 화학물질의 독성을 효율적으로 평가할 수 있는 새로운 방법론을 찾아야 하는 상황에 직면해 있다. 분자적 시작점에서 핵심 현상 거쳐 독성이 나타나는 과정 추적최근 그 대안적 방법론으로 AOP 기술이 주목받고 있다. AOP는 Adverse Outcome Pathway의 약어다. 우리 말로는 ‘독성발현경로’라 부른다. 즉, 화학물질의 노출에서부터 개인 또는 집단 수준에까지 발생하는 독성 영향을
-
과학과 놀자
센서와 사물인터넷으로 현실세계를 정밀하게 시뮬레이션하는 디지털트윈…메타버스와 달리 가상세계 변화가 현실세계에 영향 주기도
스티븐 스필버그 감독이 연출한 영화 ‘레디 플레이어 원(Ready Player One, 2018·사진)’을 보면 현실세계에 있는 주인공이 가상세계 아바타로 표현된다. 주인공은 가상세계에서의 촉감을 현실세계에서도 감각으로 느낄 수 있다. 현실세계와 가상세계를 서로 연결하는 디지털트윈(digital twin·디지털 쌍둥이) 기술은 미국 항공우주국(NASA)에서 본격적으로 시작됐다. 디지털트윈은 컴퓨터에 물리적 현실을 반영하는 가상 디지털 세계를 만들고, 현실에서 발생하는 사건을 디지털 세계에서 시뮬레이션(simulation·묘사)한다. 현실과 가상이 서로 교감디지털트윈은 현실에서 실수할 경우 큰 비용과 시간을 낭비하는 프로젝트를 성공시키기 위해 개발된 개념이다. 디지털트윈은 2010년 NASA에서 우주선의 물리적 모델을 시뮬레이션하기 위해 시도됐다. 요즘 사람들 관심이 많아지고 있는 메타버스(metaverse)는 디지털트윈과 유사한 면이 있다. 다만, 디지털트윈은 현실과 가상이 서로 교감하고, 정밀하게 물리적 세계를 시뮬레이션하는 면에서 차이점이 있다. 디지털트윈은 현실을 가상세계에 투영하기 위해 다양한 센서(sensor)나 사물인터넷(IoT)을 사용한다. 디지털트윈은 3차원(3D) 디지털 구현을 위해서 도시 전체를 스캔(scan)하기도 한다.가상세계에서 일어난 변화를 현실세계에 전달하기 위해 액추에이터(actuator)란 장치를 사용하기도 한다. 액추에이터는 컴퓨터 신호로 제어해 물리적 영향을 주는 장치를 말한다. 예를 들어, 가상세계 아바타가 건물 오피스 조명을 켜면 현실세계의 건물에 설치된 조명을 밝게 만들어, 환경 변화를 줄 수 있다. 이때, 컴퓨터로 제어되는 조명이 액추에이터의 한 예
-
과학과 놀자
지구상 모든 생명체가 의존하는 태양광 에너지…기후변화 촉발하는 과도한 화석연료 사용 경계해야
코로나19 사태 이전에는 우리의 건강에 직접 영향을 주는 대기 중의 미세먼지가 많이 논의되다가 최근에는 세계적으로 산불, 폭우, 폭염 등 이상 기후가 이슈가 되고 있다. 이상 기후의 원인으로는 대기 중 이산화탄소 농도 증가에 따른 기후 변화가 지목되고 있다. 기후는 대기의 온도, 바람, 비, 눈을 모두 아우른다. 태양광으로 대기가 가열되고, 지표에서 물이 증발해 구름이 되고, 대기압의 차이로 생긴 바람을 따라 이동한 구름이 다시 비와 눈이 되어 지표에 내린다. 이런 모든 변화가 기후다. 기후는 태양으로부터 오는 태양광 에너지에 의해 작동된다. 에너지를 전달하는 매개체인 이산화탄소태양광 에너지는 어디서 오는 걸까? 태양에서는 수소와 수소의 핵융합 반응으로 헬륨이 만들어진다. 이 과정에서 수소의 일부 물질이 에너지로 변환되는데, 이 에너지로 인해 고온으로 가열된 태양은 햇빛을 포함한 다양한 전자기파를 사방으로 방출한다. 그중 일부가 지구에 도달해 태양광 에너지를 전달한다. 반짝이는 별빛도 에너지 크기는 미미하지만 태양광과 마찬가지로 별에서 지구로 전달되는 에너지다. 아인슈타인이 발견한 것과 같이 우주에서는 물질과 에너지가 상호 변환하고, 또 이동하며 변화 혹은 순환한다. 우리 주위에도 물질이 에너지로 변환하는 예들이 있다. 우라늄 원자가 2개로 쪼개지며 일부 물질이 에너지로 변환되는데, 원자력발전소는 이 에너지를 이용해 전기를 생산한다. 병원에서 사용하는 양전자방출단층촬영(PET) 장치는 인체에 주입한 방사성원소(F-18)가 방출하는 양전자가 주위의 전자와 반응하여 두 전자의 질량이 모두 감마선 에너지로 변환되어 방출되는데, 이를 탐지하
-
과학과 놀자
일부 화학물질, 호흡곤란 등 부작용 불러…안전성 확보 힘써야
일상생활 중 반드시 필요한 의식주 속에는 우리도 모르게 노출되고 있는 요소들이 있는데, 그것은 바로 생활 속 화학물질이다. 고등학교에 다니는 김생글 학생의 아침 일과를 간단히 살펴보자. 생글이는 기상 후 등교 전 양치(향균제: 트리클로산, 보존제: 파라벤류)를 하고, 간단하게 아침 식사로 프라이팬(코팅제: 과불화화합물)에 계란 프라이를 만들어 먹었다. 세탁소에 드라이클리닝(유기용제: 유기염소화합물) 맡겼던 옷을 꺼내 입고 집을 나선 생글이는 문방구에 들러 학용품(필통: 폴리염화비닐, 지우개: 프탈레이트, 향료·접착제: 유기용제)을 구입한 뒤 영수증(비스페놀류)을 받았다.간단하게 정리한 아침 일과임에도 불구하고 다양한 의식주 활동을 통해 여러 가지 화학물질에 노출됐다는 사실을 한눈에 볼 수 있다.세계적으로 10만 종 이상의 화학물질이 사용되고 있으며, 하루 동안 인간은 최대 200여 종의 화학물질에 노출된다는 보고가 있다. 우리 생활 속에서 지속적으로 노출된 화학물질은 인체에 다양한 부작용을 야기하기도 한다. 일반인도 일상생활 속 화학물질에 대한 경계심이 어느 정도 형성됐고, 일각에서는 경계심을 넘어 화학물질의 공포증인 ‘케모포비아’ 현상까지 야기되고 있다. 유해한 화학 제품군을 대신할 수 있는 새로운 대체재 개발이나, 화학물질 노출에 따른 인체 유해성의 정확한 평가가 이뤄져야 각종 화학물질의 공해 속에서 우리 삶의 안전이 보장될 것이다. 인체에 위협을 가할 수 있는 유해화학물질산업 발달로 다양한 화학물질의 합성이 가능해지고, 이전에 사용되던 천연제품보다 훨씬 기능적으로 우수한 산업 제품이 쏟아지면서 이들 제품은 우
-
과학과 놀자
반사돼 돌아오는 빛을 X·Y·Z축 좌표로 인식하는 라이다…자율주행 도로 등 3차원 디지털 세계 구축에 활용
무인주행 자동차의 눈인 '컴퓨터 비전'은 도로 주변에 있는 모든 것을 3차원 데이터로 본다. 이런 첨단 자동차는 정확한 3차원 데이터를 얻기 위해 어떤 기술을 사용할까? 라이다(LiDAR: Light Detection and Ranging)는 레이저 빛을 물체에 쏘아 반사해 돌아오는 시간으로 정확한 거리와 위치를 측정하는 기술이다. 라이다는 무인자율주행에 필요한 정밀 3차원 디지털 지도를 만들기도 하고, 정밀한 건물 공사에 사용되기도 한다. 최근에는 디지털 트윈에 필요한 3차원 디지털 모형을 만들 때 사용돼 응용 분야가 많아지고 있다. 라이다와 인공지능 기술을 통해 인식하는 3차원 세계라이다는 1961년 레이저가 발명된 직후 개발됐다. 초기 라이다는 대기 측정과 우주 행성 측량 분야에서 사용됐다. 라이다가 사용하는 원리는 물체에 반사된 빛이 되돌아오는 시간을 측정하면 정확한 거리를 얻을 수 있다는 데 있다. 이 아이디어는 1930년 과학자 에드워드 허친슨 신지(Edward Hutchinson Synge)가 탐조등을 사용해 대기 밀도를 조사하기 위한 목적으로 제안했다. 이 연구는 빛을 이용한 원격 측량의 효시가 됐다. 이후, 라이다는 지리 공간, 건설, 광업, 농업과 같이 원격 측량이 필요한 곳에 활용되기 시작했다. 지금은 아이폰(iPhone)에도 라이다가 포함돼 있을 만큼 많은 사람이 사용하고 있다.라이다는 대상물 표면에 빛을 반사해 되돌아온 시간을 거리로 계산한 후, 이 거리를 3차원 좌표들로 변환한다. 3차원 좌표는 3차원 공간에서 X, Y, Z좌표인 포인트(point)로 구성된다. 라이다는 이 포인트의 집합인 포인트 클라우드(cloud)를 짧은 시간에 만들어낼 수 있다. 이 과정을 3차원 스캐닝(scanning)이라고 한다. 라이다는 보통 몇 미터
-
과학과 놀자
질병 유발 단백질에 대한 신약 후보물질의 생리활성을 예측하는 기술, 인공지능 활용한 가상탐색으로 신약 후보물질 빨리 찾아내
평균 10년, 1조원의 비용. 일반적으로 알려진 신약 개발에 필요한 기간과 비용이다. 이렇게 많은 시간과 비용이 드는 이유는 신약 후보 물질을 찾는 단계에서 약물의 승인 단계까지 상당한 시간과 비용이 소모되기 때문이다. 신약 개발에는 막대한 시간과 비용이 들어가지만, 성공 가능성은 희박하다. 신약 개발 과정은 질병을 일으키는 단백질을 찾아내고 해당 질병을 치료하기 위한 후보물질 탐색, 전임상, 안전성 및 약효를 평가하는 임상 1, 2, 3상 단계를 거친다. 이와 같은 과정에는 많은 시행착오가 생기며 이로 인해 막대한 연구개발 시간과 비용이 소요될 수 있다. 인공지능을 활용한 연구개발신약 개발업계 관련자들은 이런 고민을 해결하기 위해 엄청난 노력을 꾸준히 하고 있다. 최근 4차 산업혁명이라는 이슈와 함께 이런 질문에 대한 대안으로 관심받는 기술이 있다. 바로 컴퓨터를 이용한 인공지능 기술이다. 인공지능은 하드웨어 발달 및 병렬처리 알고리즘 개발에 힘입은 컴퓨터 성능 향상, 딥러닝을 기반으로 하는 획기적 데이터 분석 기술 개발, 전 세계를 연결하는 초고속 인터넷 등 다양한 기술 발전의 결과물로서 이미 이미지, 영상, 음성에 대한 인식 수준은 인간을 초월해가고 있으며 그 응용범위가 신약 개발을 포함한 모든 과학 분야의 영역으로 확대되고 있다. 인공지능을 활용하면 개선될 여지가 충분히 크기 때문에, 인공지능 기술은 기존 신약 개발 연구개발 과정의 효율성을 높여 신약 개발 성공률을 높일 수 있을 것으로 기대하고 있다.컴퓨터 기반의 신약 개발 연구는 지난 수십 년 동안 화합물과 생물학적 타깃(질병 유발 단백질) 간의 상호작용을 컴퓨터, 물리, 화학, 통계 등의
-
과학과 놀자
물질을 통과해 이온화시키는 방사선을 진단과 치료에 활용 알파선·베타선은 종양 치료…감마선은 체외진단에 적합
원자란 화학반응을 통해 더 이상 쪼개질 수 없는, 물질을 구성하는 기본 입자다. 원자는 얼마나 작을까? 일반적으로 원자의 크기는 0.1㎚(나노미터)로 원자 1억 개를 한 줄로 세워야 겨우 1㎝가 된다. 흔히 알려져 있듯 원자는 원자핵과 그 주변을 도는 전자로 구성되며 원자핵은 양성자와 중성자로 이뤄져 있다. 자연 상태에서 같은 양성자 수를 가지나 중성자 수가 다른 다양한 원소를 서로 동위원소라 부르는데, 양성자와 중성자 비율에 따라 안정한 동위원소가 되기도, 불안정한 방사성동위원소가 되기도 한다. 방사성동위원소가 내보내는 방사선의 에너지를 사용방사성동위원소는 의료, 산업, 농업 및 식품 가공 등 다양한 분야에서 이용되고 있다. 특히 의료 분야에서의 활약이 두드러지는데, 종양 치료나 혈액 검사 같은 체외 진단에 주로 활용된다. 그렇다면 의료용 방사성동위원소는 어떤 특성 차이로 치료용과 진단용으로 나뉘어 사용되는 걸까? 바로 방사성동위원소가 내보내는 방사선의 에너지 성질에 따른 차이다. 방사선은 보이지 않는 광선과 같은데, 갖고 있는 에너지가 커서 물질을 통과하며 이온화시키는 방사선을 ‘이온화 또는 전리 방사선’이라고 부른다. 가시광선, 마이크로파, 라디오파, 적외선, 자외선 등 이온화 능력이 없는 방사선은 ‘비이온화 또는 비전리 방사선’이라고 정의한다.의료용으로 사용하는 방사성동위원소는 알파선, 베타선, 감마선과 같은 이온화 방사선을 방출한다. 종이 한 장도 투과하지 못하지만 에너지는 가장 큰 알파선과 역시 투과력은 강하지 않지만 빛보다 빠른 베타선은 주로 종양 치료에 사용한다. 엑스선과 같은 전자기파인데 물질을 투