#과학과 놀자
-
과학과 놀자
자율주행과 비슷한 자율제어 AI 도입…원자력발전 조작 실수, 고장 바로 탐지
최근 열린 제21차 기후변화 당사국총회에서 대부분의 선진국이 탄소중립을 선언했다. 그러나 태양광과 풍력 등 신재생에너지만으로는 탄소 감축 목표를 달성하기 어렵기 때문에 미국, 영국, 프랑스 등 여러 나라가 원자력 기술 개발에 박차를 가하고 있다. 이는 원자력이 탄소배출이 없는 에너지원이라는 것에 공감대가 있어서다. 우리 삶과 밀접하지만 멀게 느껴지는 원자력에 대해 알아보자. 핵분열과 원자력원자는 물질을 구성하는 기본 입자이고 원자의 중심에는 원자핵이 있다. 우라늄 원자핵 1개가 중성자와 만나 원자핵이 쪼개지는 ‘핵분열’을 하면 전보다 질량이 줄어들면서 에너지가 발생한다. 이는 질량은 에너지와 같다는 것을 설명한 아인슈타인의 특수상대성이론, E=mc2로 설명된다.이처럼 핵반응에 의해 물질(원자)의 질량이 줄며 생성되는 에너지가 원자력이다. 한 번의 핵분열로 2~3개의 중성자가 생성되는데, 이 중성자들이 다른 우라늄 원자핵들과 만나면 또다시 핵반응이 일어나고 이것을 핵분열 연쇄반응이라고 한다. 결국 수많은 핵분열 연쇄반응으로 엄청난 에너지를 방출하는데, 이런 원리를 이용한 것이 원자력 발전이다.원자력발전소는 우라늄의 핵분열 연쇄반응에서 생기는 열로 물을 끓이고 증기를 발생시켜 발전기의 터빈을 돌려 전기를 생산한다. 우라늄으로 만들어진 핵연료 5.8g은 석유 835L 또는 석탄 1t으로 얻을 수 있는 에너지 양과 같고 탄소배출도 없다. 이렇게 엄청난 에너지원을 어떻게 하면 안전하게 잘 활용할 수 있을까.원자력발전소는 4단계 물리적 방벽(핵연료 소결체, 핵연료 피복관, 원자로냉각재압력경계, 격납건물)과 5단계 심층방어 전략(고장예방,
-
과학과 놀자
얼굴로 스마트폰 잠금해제…어떻게 감지·구별하나
최근 휴대폰엔 암호나 지문 대신 얼굴을 인식해 잠금을 해제하는 페이스 아이디(Face ID) 기능이 있다. 또 많은 사람이 본인의 모습을 특색 있게 남기기 위해 눈, 코, 입의 위치를 인식하는 앱을 사용하기도 한다. 이러한 작업을 위해서는 컴퓨터, 즉 기계가 이미지 정보를 인식해 얼굴 영역을 파악하고 또 그에 더해 눈, 코, 입의 위치를 파악해야 한다.컴퓨터는 어떻게 우리 얼굴을 감지하는 것일까? 확실하게 말할 수 있는 것은 사람이 물체를 인식하는 것과 컴퓨터가 물체를 인식하는 방식은 다르다는 것이다.컴퓨터는 사진이나 이미지를 디지털화된 숫자로 인식한다. 조금 더 구체적으로 말하면, 우리가 가진 디지털 이미지는 이미지의 크기만한 행렬로 표현되며 (여기서 이미지의 크기란 우리가 아는 해상도이다), 각각의 포인트는 픽셀이라고 불린다. 이 픽셀은 총 3개의 RGB(Red, Green, Blue)값을 갖는다. 즉 컴퓨터는 이미지를 3차원 배열(가로×세로×RGB)로 인식한다.따라서 컴퓨터를 사람이 인식하는 것처럼 픽셀 수준이 아니라 영역 위주로 정보를 인식하게 하려면 추가적인 계산이나 방법을 필요로 하게 되는데, 이렇게 컴퓨터가 물체나 사람을 인식하고 이미지 속 상황을 해석해 내는 것을 컴퓨터 비전이라고 한다. 컴퓨터 비전 세부 태스크들은 크게 객체 분류(image classification), 객체 탐지(object detection), 의미론적 분할(semantic segmentation)로 나눌 수 있다.객체 분류란 보통 이미지 인식이라고도 불리며, 이미지 속에 있는 객체를 인식하여 그 객체가 어떤 클래스에 포함되는지를 파악하는 기술이다. 컴퓨터 비전 영역에서 가장 기초적인 분야다. 예를 들어 비행기 사진을 입력하였을 때 이것이 비행기 클
-
과학과 놀자
바다 뒤덮는 플라스틱…썩는 제품 사용 늘려야
플라스틱의 원료인 고분자라는 개념이 세상에 나온 지 100년 만에 우리는 바야흐로 플라스틱의 시대에 살게 되었습니다. 플라스틱이라는 신소재는 원래 자연환경을 보호하기 위한 목적으로 개발되었습니다.1870년대에 코끼리 상아 밀렵을 막기 위해 최초의 합성 플라스틱인 셀룰로이드로 만든 당구공이 발명되었고, 그로부터 100년 후에는 쇼핑 붐이 일어나면서 나무벌목을 막기 위해 폴리에틸렌으로 만든 봉투가 대량 보급되었습니다. 사용량이 크게 늘면서 사람들이 간과한 것은 쓰고 버려진 후의 운명에 관한 뒷이야기입니다. 수도권 매립지가 2025년에 포화되는 것으로 전망돼 쓰레기 대란이 목전에 있는 상태이고, 해양 쓰레기의 80%를 이미 플라스틱이 차지하여 2050년에 들어서는 해양생물보다 그 숫자가 많아질 것으로 예측되고 있습니다. 이대로 사태를 방치하면 2050년의 탄소배출 허용총량의 15%를 플라스틱 산업이 차지하게 될 것입니다.재사용·재활용이 어려운 플라스틱 제품들은 생분해성 소재로의 변화가 필요한 시점입니다. 생분해성 플라스틱 비중 1%가 안돼하지만 플라스틱 시장에서 생분해성 플라스틱이 차지하는 비중은 1%가 되지 못하는 것이 현실입니다. 생분해성 플라스틱 시장이 근래에 들어서 큰 폭으로 성장하고 있지만, 아직 실생활이나 산업용 소재로 적용하기에 부족한 기계적 물성과 높은 가격이 발목을 잡고 있어, 이를 극복할 수 있는 연구개발이 전폭적으로 이루어져야 합니다. 그런데 연구자들의 의지를 꺾는 일부 부정적인 견해로 ‘생분해성 플라스틱은 퇴비화 설비가 갖추어지지 않으면 분해가 안된다’ ‘어차피 비분해성 플라스틱과 섞여서 처리되기 때
-
과학과 놀자
겨울철 미세먼지 농도 좌우하는 '대기 혼합고'란
최근 10년간 한국과 중국의 관련 연구들에서 고농도 미세먼지 현상이 지속될 때, 대기 혼합고가 낮았다는 결과를 발표했다. 그렇다면 대기 혼합고는 대기오염물질 농도와 어떤 관련이 있을까?2021년 11월 20일 오전 일부 지역에서 초미세먼지(PM2.5) 농도가 100㎍/㎥ 가까이 치솟으면서 ‘매우 나쁨’ 수준을 보였다. 국립환경과학원은 이번 고농도 미세먼지 현상이 18일 밤부터 중국으로부터 북서풍을 타고 유입되고, 대기 정체현상이 겹치면서 발생했다고 설명했다. 여기서 우리가 주목해야 할 부분은 대기 정체현상뿐만 아니라 대기가 연직으로 혼합될 수 있는 높이인 ‘대기 혼합고(Atmospheric Mixing Layer Height)’다. 대기 혼합고에 따른 오염물질 농도 변화같은 넓이에 천장 높이만 다른 각각의 공간에서 사람들이 추위를 이겨내기 위해 모닥불을 피웠고, 이 모닥불에서 배출되는 총 초미세먼지의 양은 같다고 가정해보자. 참고로, 초미세먼지의 대기 중 농도는 단위 부피(㎥)당 질량(㎍)농도로 나타낸다(㎍/㎥). 이 가정에서 여러분은 천장이 높을수록 공간이 넓어져 초미세먼지 농도가 낮아지고, 반대로 천장이 낮을수록 공간이 좁아져 초미세먼지 농도가 높아진다는 사실을 이해할 수 있을 것이다. 눈에 보이지 않지만, 대기 혼합고가 이런 천장 역할을 한다.대기오염물질은 대기 혼합고 아래의 공간에서 섞일 수 있으며, 대기 혼합고는 지표면의 가열과 냉각 등에 의해 계속해서 변화한다. 수평적인 공기의 이동·확산이 없다고 가정하면, 국내에서 배출되는 대기오염물질의 총량이 같더라도 대기 혼합고가 2~4배 낮아진다면 대기 중 오염물질의 농도를 2~4배 증가시키는 결과를 가져온다.겨울
-
과학과 놀자
500여종 미생물과 '바른 공생'…건강을 부탁해
사람의 몸에는 다양한 미생물이 서식하고 있으며, 그 수는 우리 몸을 구성하고 있는 세포 수보다 많다. 70㎏의 성인을 기준으로 할 때, 몸에 서식하는 미생물 개체 수는 약 38조 개, 몸을 구성하는 세포 수는 그보다 20% 적은 30조 개 정도라고 한다. 이렇게 사람의 몸속에서 살아가는 미생물을 마이크로바이옴(microbiome, 공생미생물총)이라고 부른다.지금으로부터 약 반세기 전, 미국의 과학자 린 마굴리스(Lynn Margulis)는 우리 몸을 구성하는 세포 내 소기관인 미토콘드리아가 오래전에는 독립적인 세균이었다가 다른 미생물과의 공생관계를 통해 현재 존재하는 다세포생물의 근원이 되는 진핵세포로 진화했다는 가설을 펼쳤다. 세포내공생설(endosymbiosis)이라는 이 학설은 지금은 학계에서 정설로 널리 받아들여져 교과서에도 등장하고 있지만 당시로서는 매우 획기적인 가설로, 마굴리스는 이 가설을 펼친 논문을 세상에 알리기까지 무려 10개가 넘는 학술지로부터 게재 거절 결정을 받았다고 한다. 이 이론에 따르면 우리 인간의 모든 세포 내에는 고대 미생물이 함께 거주하고 있다. 특히 미토콘드리아의 역할이 세포호흡을 통한 에너지 생산임을 생각해 보면 미생물이 우리 몸에서 얼마나 중요한 부분을 담당하고 있는지 가늠할 수 있을 것이다. 미생물의 끊임없는 유출입 진행 중우리 몸에서는 끊임없는 미생물의 유입과 유출이 진행된다. 식사를 하거나 음료를 마실 때, 호흡을 할 때마다 수많은 미생물이 우리 몸 안으로 들어오고 대변을 통해 다수의 장내 미생물이 몸 밖으로 배출된다. (대변 무게의 절반 정도가 미생물이라는 보고가 있다. ) 피부에 존재하는 미생물도 다양하기 때문에 내가 어디에 거주
-
과학과 놀자
물 속에는 물 분자 H2O와 ○○도 있다
물은 다양한 지구 시스템(지권, 수권, 기권, 생물권, 외권)을 거치면서 액체, 기체, 고체와 같은 상의 변화를 겪으며 순환한다. 이 과정에서 물 속에는 다양한 물질이 포함될 수 있다. 물과 함께 물 속 물질 순환이 연관되어 있는 점을 이해할 필요가 있다. 물 속에 포함될 수 있는 물질지구에 존재하는 물 속에는 물 분자(H2O)뿐만 아니라 다양한 다른 물질이 포함되어 있다. 물 속에 있는 물질을 크게 입자성 물질과 용존성 물질로 구분할 수 있다. 입자성 물질은 가만히 두면 중력에 의해 가라앉는 일정 크기 이상(0.45㎛)의 물질들을 의미하며, 눈에 보이는 대부분의 큰 물질들(나뭇조각, 흙 등)이 포함된다. 용존성 물질은 가만히 둬도 가라앉지 않는 물질이며, 그 물질들은 다시 유기성 물질과 무기성 물질로 구분이 된다. 여기서 유기성 물질이란 탄소를 포함하고 있는 물질로 단백질, 다당류, 휴민산(부식산) 등이 포함된다. 그리고 무기성 물질이란 염소(Cl-), 질산염(NO32-), 황산염(SO42-), 칼슘(Ca2+), 마그네슘(Mg2+)처럼 탄소가 포함되지 않은 각종 원자 또는 분자들이다. 바이러스나 미생물과 같은 것들도 물 속에 포함될 수 있다. 1900년대 초반까지만 해도 바이러스나 미생물에 의해 발생하는 수인성 질병으로 인해 인류의 수명이 짧았다. 물의 순환 과정에서의 물질 순환그러면 우리 주변의 물의 순환을 따라가면서 어떤 것들이 포함될 수 있는지 확인해 보자. 바닷물은 전 지구의 대부분을 덮고 있는 액체로, 특히 소금(NaCl)이 다량(약 38g/㎏) 포함되어 있다. 바닷물이 태양에너지에 의해 가열되면 증발하게 되는데, 바닷물이 증발하게 되어 기권에서 수증기로 존재할 때는 이온이 거의 존재하지 않은 증류수
-
과학과 놀자
미래를 바꿀 양자컴퓨터…'포논'에 달렸다
"열이 소리라고? 말이 돼?"최근 기후변화로 한국에서 가을 날씨를 찾아보기 어렵다는 보도가 있다. 다른 나라에선 이상기후가 나타났다는 뉴스가 연일 보도되고 있다. 반대로 다른 한쪽에서는 반도체 성능과 효율을 높이기 위해 총칼 없는 5㎚(1㎚=10억분의 1m) 이하 선폭 경쟁이 벌어지고 있다는 뉴스가 나온다. 기후변화와 반도체는 연관성이 없어 보이지만 따지고 보면 모두 열과 온도에 의해 생기는 문제로 귀결된다.일상생활에서 우리는 자연스럽게 열과 온도에 관해 이야기하지만, 막상 사람들에게 열과 온도를 정의하거나 설명해보라고 하면 많은 이들이 당황하며 대답하지 못한다. 물리학적으로 온도에 대한 정의는 ‘입자의 운동 에너지’를 엔트로피 통계치로 미분해 얻는 값이다. 그럼 소리의 정의는 어떤가. 소리는 음원으로부터 방사되는 압력파가 매질 내에서 전달되는 것으로 정의한다. 매질의 ‘입자들이 진동하는 과정’에서 주변 밀도보다 높아졌다가 낮아지는 과정을 반복하면서 전달된다. 그럼 아래와 같은 식이 성립한다.온도 = 입자의 운동 에너지 = 입자의 진동 에너지 = 소리어? 그럼 열이 소리와 같아지네. 말이 되나? 열과 소리의 최소 단위 포논‘포논(phonon)’을 알려면 양자역학을 이해해야 한다. 양자역학의 태동은 빛을 이해하면서 생겼으며, 고전역학에서 현대역학으로의 패러다임 변화에 지대한 영향을 미쳤다. 양자역학은 빛의 가장 작은 단위인 ‘포톤(photon)’을 설명하기 위해 태동했는데, 이와 상보적인 개념으로 자연스럽게 ‘포논’의 개념이 생겼다. 1905년 아인슈타인에 의해 광전 효과(photoelectric effect)의 실험으로 최소의 ‘빛
-
과학과 놀자
환경위기 앞두고 '수소 사회'로의 대전환 도전중
지난 10월 18일 '2050 탄소중립위원회' 회의가 열렸다. 우리나라가 2050년까지 탄소중립을 달성하기 위해 해야 하는 것에 대해 논의하는 자리였다. 여기에는 화석연료 사용을 줄이고, 필요한 에너지원 중 청정에너지원으로 수전해 수소 활용을 확대하는 것이 포함되어 있다. 화석연료는 수백만 년 전 땅에 묻힌 생물의 사체가 오랜 기간 열과 압력을 받아 생성되어 높은 에너지 밀도(석유:44MJ/kg, 석탄:25MJ/kg)를 가지고 있다. 18세기 시작된 인류의 산업혁명은 이와 같은 화석연료 없이는 이루어질 수 없었을 것이다. 산업혁명은 화석연료 사용을 통해 기존에는 상상하지 못하던 사회·경제적 변화를 일으키고 인류의 삶을 크게 향상시켰다. 화석연료와 기후위기그러나 화석연료의 발견과 활용은 인류에게 예상하지 못한 어려움도 주었다. 1952년 영국 런던에서 발생한 그레이트스모그(great smog)는 화석연료를 과도하게 사용하여 생긴 공기 오염이었다. 이때 1만 명 이상의 사망자가 발생한 것으로 추산된다. 21세기에 들어서도 화석연료 사용에 따른 대기오염은 그 심각성을 더하여, 최근에도 중국의 대기오염이 심각하게 여겨지고 있다.독일 막스플랑크연구소 클라우스 하셀만은 온실가스 증가에 따른 지구 온난화를 예측한 공로로 노벨상을 받았다.그는 온실가스 증가가 지구의 기후 변화에 어떻게 영향을 주는지에 대해 복잡한 시스템을 이해하고 그 영향을 예측할 수 있는 모델을 개발했다. 올해의 노벨 물리학상은 인류의 화석연료 사용에 따른 지구 온난화와 기후위기에 대해 다시 생각하게 한다. 올해 유엔 IPCC(기후변화에 관한 정부 협의체)는 화석연료의 사용과 기후위기가 가혹한 기상 이벤트를