본문 바로가기
  • 과학과 놀자

    세계인이 사랑하는 한국 농기구, 호미에 담긴 과학

     국립중앙과학관과 함께하는 과학 이야기 (10)세계 최대 인터넷 쇼핑몰 아마존에서 인기를 끈 한국 농기구가 있다. 우리 농촌에서 흔히 볼 수 있는 호미다. 국토가 넓은 미국은 원래 대량 재배에 최적화된 농기구가 많았다. 그런데 코로나 등의 영향으로 집 근처 텃밭이나 정원을 가꾸는 취미가 유행하면서 잡초 뽑기, 씨앗 심기 등 소규모 재배에 사용할 수 있는 호미가 각광받기 시작한 것이다.호미는 한반도에서 고대부터 사용하던 농기구다. 석기 시대 유물 중에서도 호미와 비슷한 모양의 도구가 있고, 고려속요 등 문학 작품에도 호미가 등장한다. 우리나라에선 지역에 따라 다양한 형태의 호미가 발달했다. 호미를 써 본 서양인들은 ‘편리하고 튼튼하다’며 찬사를 아끼지 않고 있다.호미가 편리하게 느껴지는 것은 그 안에 과학 원리가 숨어 있기 때문이다. 호미의 날은 ‘ㄱ’자로 꺾인 예각을 이루고 있다. 덕분에 호미 날이 바닥에 닿을 때 마찰력이 줄어들어 작은 힘으로도 흙을 깊게 파고 들어갈 수 있다. 또 흙을 파거나 잡초 뿌리를 제거할 때 지렛대 원리를 활용해 최소한의 힘으로 작업할 수 있다. 서양엔 작은 모종삽은 있지만, 호미처럼 날이 꺾인 모양의 농기구는 없었다고 

  • 과학과 놀자

    과학과 예술의 결합, 한 폭의 그림 같은 미세 과학의 세계

    국립중앙과학관과 함께하는 과학 이야기 (9)과학은 객관적인 사실을 발견하고 보편타당한 원리를 찾아내는 학문 분야다. 반면 예술은 아름다움을 표현하는 활동으로, 주관적이고 모호하다. 이처럼 과학과 예술은 서로 반대되는 성격을 지녔지만, 상호 보완적인 역할을 하기도 한다. 과학사를 돌아보면 예술적 상상력이 과학적 발견을 자극했고, 과학 지식이 예술에 적용돼 더욱 다양한 작품을 탄생시켰다.오늘날에는 과학과 예술의 융합이 더욱 빈번하게 일어나고 있다. 눈으로 볼 수 없는, 현미경으로만 관찰할 수 있는 세계를 연구하는 과학 분야를 ‘미세 과학’이라고 한다. 미세 과학은 때때로 예술의 소재가 되기도 한다. 생명 활동을 형광 현미경으로 촬영해 마치 한 폭의 그림처럼 펼쳐 보이는 것이다. 생물의 세포와 세균 등은 자외선이나 가시광선을 받았을 때 빛을 내는 ‘형광 현상’을 일으키는데, 형광 현미경을 활용하면 이런 현상을 관찰할 수 있다.그림은 태어난 지 5일 된 생쥐의 망막 혈관이 성장하며 뻗어 나가는 과정을 촬영한 것이다. 초록색 빛을 내는 망막 혈관과 붉은색 빛을 내는 혈관 주위 세포가 뒤섞인 모습이 물감을 칠해 놓은 것처럼 보인다. 생물의 세포, 동식물의 성장 과정, 꽃가루의 표면 등을 이와 비슷한 방식으로 표현할 수 있다. 형광 현미경이 포착한 장면은 생명을 더욱 신비롭게 느껴지게 한다.과학 기술의 변화는 예술의 성격도 바꾸고 있다. 디지털 기술의 발달로 예술도 현실 세계에만 머무르지 않는다. 물리적 세계와 가상의 세계를 넘나드는 콘텐츠가 등장하고 있다. 메타버스 등 가상 현실 기술이 발달하면서 이런 현상은 속도가 더욱 빨라질 것이다.

  • 과학과 놀자

    올 여름엔 '과학 바캉스'를 즐겨보자

    국립중앙과학관과 함께하는 과학 이야기 (3)어느새 2022년이 절반 가까이 지나가고 있다. 한 달 반 정도만 더 열심히 공부하면 즐거운 여름 방학을 맞는다. 아직 좀 이르긴 하지만 더위를 식히고 과학 지식도 얻을 수 있는 바캉스 방법을 소개한다. 과학관으로 떠나는 바캉스, ‘과캉스’다. 평소 가고 싶었던 과학관에 가 보는 것도 좋고, 특별히 점찍어 둔 곳이 없다면 가족과 피서를 떠나는 김에 근처에 있는 과학관을 찾아가도 좋다. 국립과학관 5곳(대전, 부산, 대구, 광주, 경기 과천)을 비롯해 종합 과학관만 전국에 29곳이 있다. 자연·생태(40곳), 천문·지질(29곳), 해양(25곳), 우주(9곳), 동물(7곳) 등 주제별 과학관도 많다과학관 위치와 전시 주제에 관한 정보는 전국 과학관 길라잡이 홈페이지에서 찾아볼 수 있다. 여기에선 주제별, 지역별로 과학관을 찾아볼 수 있다.어느 과학관으로 갈지 정했다면 어떻게 즐길지도 생각해 보자. 과학관 관람은 편한 시간을 택해 자유롭게 할 수도 있고 정해진 시간에 맞춰 해설사의 설명을 들으며 할 수도 있다. 여름에는 과학관마다 상설 전시 외에 특별 전시도 많이 열리니 관심이 가는 특별전이 있는지 찾아보는 것도 좋다. 과학과 좀 더 친해지고 싶다면 일정한 수강료를 내고 교육 체험 프로그램을 수강하거나 과학 캠프에 참여해 볼 것을 권한다.과학관에 직접 가는 것이 어렵다면 비대면 관람 체험을 활용할 수도 있다. 코로나19를 계기로 대부분의 과학관이 가상현실(VR) 등을 활용한 온라인 비대면 관람 서비스를 강화했다. 인터넷이나 스마트폰으로 집에서도 전국에 있는 과학관을 둘러볼 수 있다. 올여름엔 과학 속에서 휴식하고 과학과 함께

  • 과학과 놀자

    자연을 흉내낸 과학 기술, '자연 모사'의 세계

    과천과학관과 함께 하는 과학 이야기 (6) 자연계의 모든 생물은 자연 선택과 먹이 사슬이라는 생존 경쟁 속에서 적응과 진화를 거치며 각자 환경에 맞는 특수한 기능을 발달시켰다. 인간이 사용하는 기술 중에는 생물체의 독특한 기능에서 아이디어를 얻은 것이 많다. 이런 것을 ‘자연 모사 기술’이라고 한다.15세기 르네상스 시대의 미술가이자 과학자인 레오나르도 다 빈치는 하늘을 나는 새를 관찰해 공기 역학의 원리를 터득하고 새의 날개를 닮은 비행기를 설계했다. 자연 모사 기술 중에서도 소재와 소자 응용에 큰 영향을 미친 기술 몇 가지에 대해 알아보자.첫 번째로 소개할 생물은 암초에 붙어 서식하는 연체동물 홍합이다. 홍합은 미끄러운 바위 표면에도 찰떡같이 잘 달라붙어 있다. 쉴 새 없이 몰아치는 거센 파도에도 흔들리지 않고 강한 접착력을 보여준다. 비결은 홍합에 붙어 있는 족사다. 족사는 콜라겐 섬유에 접착 단백질이 이리저리 얽혀 있다.과학자들은 홍합의 족사를 연구해 물기가 묻은 표면이나 금속 등 미끄러운 곳에도 쓸 수 있는 접착제를 개발하고 있다. 홍합의 족사 구조를 모방한 그물망 형태의 접착제는 피가 철철 흐르는 수술 부위의 상처를 꿰매지 않고 붙일 수 있는 생체 접착과 물에 계속 닿아 있어 일반 접착제를 사용하기 어려운 배의 유지·보수 등에 활용할 수 있다.거미는 거미줄에 먹이가 걸렸을 때 생기는 미세한 떨림을 감지해 먹잇감을 찾아간다. 거미는 먹이를 더 잘 감지할 수 있는 방향으로 다리 구조를 진화시켜 왔다. 거미 다리를 확대해 보면 미세한 균열 구조가 관찰된다. 이 균열이 붙었다 떨어졌다 하면서 진동을 민감하게 감지해 내는 것이

  • 과학과 놀자

    정월 대보름달과 추석 보름달, 어느 달이 더 클까?

     과천과학관과 함께 하는 과학 이야기 (3)보름달은 예로부터 풍요와 번영, 행운을 상징한다. 농경사회에 살았던 우리 조상들은 정월 대보름, 즉 음력 1월15일에 뜨는 보름달을 보며 한 해 농사의 풍년과 건강을 기원했다. 정월 대보름 외에도 6월 유두, 7월 백중, 8월 한가위(추석) 등 보름달이 뜨는 날을 중요한 명절로 삼았다.보름달은 대략 29.5일마다 한 번씩 뜬다. 1년에 12~13회 뜬다는 얘기다. 이 중 어떤 보름달이 우리 눈에 가장 크게 보일까. 정월 대보름이나 추석 보름달이 가장 클 것이라고 생각하는 사람들이 많다. 아마도 명절 이름에 크다는 의미의 '대'와 '한'이 들어 있어서 그럴 것이다. 하지만 과학적으로 따져보면 그렇지 않다.달은 지구를 중심으로 타원형 궤도를 돈다. 그래서 지구와 달은 가까워졌다 멀어졌다를 반복한다. 가장 가까울 때(근지점) 거리는 약 36만3300㎞, 가장 멀 때(원지점)는 약 40만5500㎞이다. 우리 눈에 보이는 달의 크기는 달과 지구의 거리에 따라 결정되는데 가장 클 때와 가장 작을 때의 크기 차이는 약 14%이다.그런데 달이 지구 주위의 근지점에서 다음 근지점까지 가는 기간, 즉 근점월 주기는 약 27.3일로 보름달이 뜨는 주기(삭망 주기)와 2일 정도 차이가 난다. 삭망 주기는 달의 모양과 관련이 있을 뿐 달의 크기와는 관련이 없다. 반면 달의 근점월 주기는 달의 모양과는 상관이 없다.만일 달의 근점월 주기와 삭망 주기가 같다면 특정 시점에 뜨는 달의 크기는 항상 같아야 한다. 정월 대보름에 가장 큰 보름달이 떴다면 앞으로도 계속 정월 대보름에 뜨는 달이 가장 커야 한다는 의미다.그러나 두 가지 주기에 이틀 정도 차이가 있기 때문에 같은 시기에 뜨는

  • 과학과 놀자

    설탕을 가열하면 갈색으로 변하는 이유는? '달고나'에 숨은 과학

     과천과학관과 함께 하는 과학 이야기넷플릭스 드라마 ‘오징어 게임’이 지난해 전 세계적으로 열풍을 일으키면서 국내는 물론 해외에서도 설탕을 녹여 ‘달고나’를 만드는 것이 하나의 놀이 문화로 떠올랐다. 집에서도 쉽게 달고나를 만들어 볼 수 있는 키트까지 나왔다. 하얀 설탕이 녹으면 갈색으로 변하는 과학적 원리는 무엇일까. 달고나를 만드는 데 베이킹 소다를 넣는 이유는 무엇일까. 달고나에 숨은 과학에 대해 알아보자.달고나의 과학을 이해하려면 우선 원재료인 설탕을 이해해야 한다. 설탕은 단당류인 과당과 포도당이 1:1로 결합한 이당류 형태의 감미료다. 중불에서 하얀 설탕을 녹이면 천천히 갈색으로 변하게 되는데, 이 과정이 일종의 갈변 반응인 캐러멜화 반응이다. 이 캐러멜화 반응은 설탕을 낮은 온도로 가열할 때 수분이 빠져나가면서 설탕의 결합 구조가 깨져 과당과 포도당이 생성되는 것이다.캐러멜화 반응 외에 효소 없이 발생하는 갈변 반응으로는 요리 유튜버 ‘승우아빠’의 스테이크 굽는 법 영상으로 유명해진 ‘마이야르 반응’이 있다. 순수한 당에 열을 가해 갈변을 일으키는 캐러멜화 반응과 달리 마이야르 반응은 당과 아미노산이 상대적으로 저온에서 반응해 보기만 해도 먹음직스러운 갈색으로 변하는 반응이다. 된장이나 간장이 만들어지는 과정 또한 콩과 밀 속에 포함된 당분과 아미노산이 오랜 시간을 거치며 천천히 결합하는 마이야르 반응의 일종이다.달고나에 베이킹 소다(탄산수소나트륨)를 넣는 이유는 무엇일까. 베이킹 소다는 수분이나 열에 반응해 이산화탄소를 방출하기 때문에 제빵이나 발포정 등에 널리 활용된다. 캐

  • 경제공부가 이렇게 재밌었어?…대입 콘텐츠 여기 다 있네

    올해 대학수학능력시험(수능)에선 국어 영역이 특히 어려웠다는 수험생이 많았다. 올해뿐만 아니라 최근 수능에서 국어를 힘들어하는 학생이 많다. 문학 철학 경제 과학 예술 등 다양한 분야의 지문이 출제되는데 대부분의 학생에겐 주제 자체가 생소하기 때문이라는 분석이다. 하지만 시험 준비에 바쁜 수험생이 시간을 내 책을 읽기도 쉽지 않다.한국경제신문사의 중고생 경제·논술 신문 생글생글은 수험생의 이런 고민을 해결해줄 최적의 대안이다. 깊이 있는 시사 이슈 해설과 인문 사회 과학 분야의 풍부한 읽을거리를 만날 수 있다. 생글생글은 1일 지면과 홈페이지(sgsg.hankyung.com)를 대대적으로 개편하고, 모바일 페이지를 개설했다. 새로운 콘텐츠도 확충해 수험생의 최고 동반자가 될 것으로 기대를 모은다. 시사 이슈 해설·주식투자 길잡이생글생글 제호와 1면 디자인부터 확 달라졌다. 지면 활자도 커져 더 쉽고 편안하게 읽을 수 있게 됐다.한경 베테랑 기자들이 시사·경제 이슈를 쉽고 재미있게 해설해준다. 금리, 환율, 부동산 시장 등 복잡한 경제 문제부터 기후변화, 난민 문제 등 첨예한 시사 이슈까지 핵심과 요점을 정확하게 짚어 전달한다. 주식투자 열풍 속에 청소년들 사이에서도 투자와 재테크에 관심이 높아지는 추세를 반영해 ‘주코노미의 주식 이야기’를 매주 싣는다. 한경 증권 전문 기자들이 투자의 기초 개념부터 친절하게 설명해 올바른 투자 습관을 기를 수 있도록 안내한다. 동영상 경제 강의·진로 탐색 콘텐츠 강화새로 바뀐 생글생글 홈페이지는 커버 스토리와 시사이슈 찬반토론, 키워드 시사경제, 시네마노믹스 등 생글생글의 주요 콘텐츠

  • 커버스토리

    기초과학 약한 한국, 노벨상 '빈손'…"그래도 희망은 있다"

    국제 학술지 네이처는 2016년 ‘한국 과학자가 노벨상을 못 받는 이유’ 다섯 가지를 소개했습니다. 활발한 토론이 어려운 경직된 연구실 분위기, 기업에 의존하는 응용학문 중심의 연구개발(R&D) 투자, 시류에 편승하는 주먹구구식 투자, 인재 해외 유출, 정부 R&D 투자에 비해 절대적으로 부족한 논문 수 등이었습니다. 당시엔 한국이 국내총생산(GDP) 대비 R&D 투자 비중이 세계 1위일 정도로 엄청난 자금을 과학기술에 쏟아붓고 있었지만 “노벨상은 돈만으로 안 된다”고 꼬집었던 것이죠. 아직도 모자란 기초과학 육성노벨 과학상이 물리 화학 등 기초과학을 중시한다는 점을 감안하면 네이처의 진단은 2021년 현재에도 뼈 아픈 지적입니다. 단기간에 경제성장을 이루기 위해 우리는 그동안 ‘빠른 추격자(fast follower)’ 전략을 폈고 R&D 투자도 당장 돈이 될 만한 분야에 집중했습니다. 반도체는 잘 만들지만 컴퓨터의 두뇌라 할 중앙처리장치(CPU)는 미국 인텔에 의존한다거나, 휴대폰의 핵심인 모바일 중앙처리장치(AP)는 자체 개발했지만 운영체제는 구글의 안드로이드에 의존하는 등 원천기술보다 제품화를 위한 응용기술에 집중했던 것이 사실입니다. 그러다 보니 기초과학보다 응용과학 위주로 R&D 투자를 해왔죠. 우리나라 R&D 투자의 75%를 기업이 주도한다는 게 당시 네이처의 분석이었습니다.뛰어난 인재들이 변호사 의사 등 안정적이고 돈을 많이 벌 수 있는 분야에 몰린다는 점도 기초과학 발전에 걸림돌로 보입니다. 영재학교 과학고 등 과학인재 양성에 초점을 맞춘 학교도 있지만 입시 위주 교육환경은 과학고 졸업자마저도 의대로 진학하게 만드는 것이 현실입