#수리논술
-
진학 길잡이 기타
이중시그마의 계산
고교과정에서 이중시그마를 계산하는 경우는 거의 없지만 문제를 해석하는 방식에 따라 필연적으로 이를 처리해야 할 때가 있을 수 있다. 주어진 등식을 n이 아닌 m에 대한 증명과정으로 해석했다면 이중시그마를 반드시 계산해야 하므로 이 과정을 자세히 살펴보기로 하자. ☞ 포인트수리논술에서는 문제를 다양한 방식으로 해석하게 될 때가 있을 수 있다. 만일 자신이 해석한 방식이 출제자의 의도에 맞는 것인지 확신할 수 없는 경우라면 당황하지 말고 자신이 이해한 방식대로 자신있게, 그리고 논리적으로 상세하게 기술하는 것이 필요하다. 이 경우 주어진 방식 내에서 논리성이 확보되면 충분히 부분 점수를 받을 수 있기 때문이다. 2020학년도 연세대 모의논술과 같이 학교가 제시한 풀이 방식과 다른 방향의 예시 답안도 복수로 인정하는 경우가 있으므로 시험장에서만큼은 자신감을 가지고 답안을 작성해야 한다.
-
진학 길잡이 기타
함수의 연속성과 미분가능성
함수의 연속성을 나타내는 수식적 표현을 바탕으로 이를 도함수의 정의에 적용하는 형태의 논제가 꾸준히 출제되고 있다. 이런 논제 해결을 위해서 함수의 연속성을 나타내는 다양한 형태의 수식적 표현 방법을 숙지하고, 이를 논제에 올바르게 적용하는 반복적인 연습이 요구된다. ☞ 포인트수리논술의 본질은 ‘출제자와의 소통’이다. 출제자가 묻고 있는 것을 정확히 파악하는 것이 소통의 기본이며, 문제 해결을 위해 출제자가 던져준 여러 도구 즉, 제시문과 조건 등을 적절한 시기에 올바르게 사용하는 것이 이런 소통을 더 매끄럽게 할 수 있도록 도와준다. 직접적인 도구가 보이지 않는 경우에는 문항 배치의 순서에서 출제자가 의도한 맥락적 흐름을 파악할 수도 있다.