#한국원자력연구원
-
과학과 놀자
지구상 모든 생명체가 의존하는 태양광 에너지…기후변화 촉발하는 과도한 화석연료 사용 경계해야
코로나19 사태 이전에는 우리의 건강에 직접 영향을 주는 대기 중의 미세먼지가 많이 논의되다가 최근에는 세계적으로 산불, 폭우, 폭염 등 이상 기후가 이슈가 되고 있다. 이상 기후의 원인으로는 대기 중 이산화탄소 농도 증가에 따른 기후 변화가 지목되고 있다. 기후는 대기의 온도, 바람, 비, 눈을 모두 아우른다. 태양광으로 대기가 가열되고, 지표에서 물이 증발해 구름이 되고, 대기압의 차이로 생긴 바람을 따라 이동한 구름이 다시 비와 눈이 되어 지표에 내린다. 이런 모든 변화가 기후다. 기후는 태양으로부터 오는 태양광 에너지에 의해 작동된다. 에너지를 전달하는 매개체인 이산화탄소태양광 에너지는 어디서 오는 걸까? 태양에서는 수소와 수소의 핵융합 반응으로 헬륨이 만들어진다. 이 과정에서 수소의 일부 물질이 에너지로 변환되는데, 이 에너지로 인해 고온으로 가열된 태양은 햇빛을 포함한 다양한 전자기파를 사방으로 방출한다. 그중 일부가 지구에 도달해 태양광 에너지를 전달한다. 반짝이는 별빛도 에너지 크기는 미미하지만 태양광과 마찬가지로 별에서 지구로 전달되는 에너지다. 아인슈타인이 발견한 것과 같이 우주에서는 물질과 에너지가 상호 변환하고, 또 이동하며 변화 혹은 순환한다. 우리 주위에도 물질이 에너지로 변환하는 예들이 있다. 우라늄 원자가 2개로 쪼개지며 일부 물질이 에너지로 변환되는데, 원자력발전소는 이 에너지를 이용해 전기를 생산한다. 병원에서 사용하는 양전자방출단층촬영(PET) 장치는 인체에 주입한 방사성원소(F-18)가 방출하는 양전자가 주위의 전자와 반응하여 두 전자의 질량이 모두 감마선 에너지로 변환되어 방출되는데, 이를 탐지하
-
과학과 놀자
물질을 통과해 이온화시키는 방사선을 진단과 치료에 활용 알파선·베타선은 종양 치료…감마선은 체외진단에 적합
원자란 화학반응을 통해 더 이상 쪼개질 수 없는, 물질을 구성하는 기본 입자다. 원자는 얼마나 작을까? 일반적으로 원자의 크기는 0.1㎚(나노미터)로 원자 1억 개를 한 줄로 세워야 겨우 1㎝가 된다. 흔히 알려져 있듯 원자는 원자핵과 그 주변을 도는 전자로 구성되며 원자핵은 양성자와 중성자로 이뤄져 있다. 자연 상태에서 같은 양성자 수를 가지나 중성자 수가 다른 다양한 원소를 서로 동위원소라 부르는데, 양성자와 중성자 비율에 따라 안정한 동위원소가 되기도, 불안정한 방사성동위원소가 되기도 한다. 방사성동위원소가 내보내는 방사선의 에너지를 사용방사성동위원소는 의료, 산업, 농업 및 식품 가공 등 다양한 분야에서 이용되고 있다. 특히 의료 분야에서의 활약이 두드러지는데, 종양 치료나 혈액 검사 같은 체외 진단에 주로 활용된다. 그렇다면 의료용 방사성동위원소는 어떤 특성 차이로 치료용과 진단용으로 나뉘어 사용되는 걸까? 바로 방사성동위원소가 내보내는 방사선의 에너지 성질에 따른 차이다. 방사선은 보이지 않는 광선과 같은데, 갖고 있는 에너지가 커서 물질을 통과하며 이온화시키는 방사선을 ‘이온화 또는 전리 방사선’이라고 부른다. 가시광선, 마이크로파, 라디오파, 적외선, 자외선 등 이온화 능력이 없는 방사선은 ‘비이온화 또는 비전리 방사선’이라고 정의한다.의료용으로 사용하는 방사성동위원소는 알파선, 베타선, 감마선과 같은 이온화 방사선을 방출한다. 종이 한 장도 투과하지 못하지만 에너지는 가장 큰 알파선과 역시 투과력은 강하지 않지만 빛보다 빠른 베타선은 주로 종양 치료에 사용한다. 엑스선과 같은 전자기파인데 물질을 투
-
과학과 놀자
원자에서 방출되는 빛은 전자기파 에너지…세상을 밝히는 빛, 물질과 우주의 신비도 알려준다
머리카락 굵기의 100억분의 1 정도 작은 크기인 원자핵은 어떤 모양일까? 400억 광년 거리에 있는 먼 우주의 별들은 나이가 얼마나 되고 어떤 물질로 이루어졌을까? 물질을 구성하는 기본 입자인 원자와 원자에서 방출되는 빛을 분석하면 이런 질문에 대한 해답을 얻을 수 있다. 최근에는 분석 기술 발달에 따라 플라스마나 동위원소 분석을 통한 핵융합과 원자력과 같은 거대과학에도 활용되고 있으며, 극초단 파장을 이용한 첨단 반도체 장비 개발에도 핵심 역할을 하고 있어 기초과학의 힘을 증명하고 있다.물질의 기본 구성 입자인 원자(atom)는 기원전 5세기경 그리스의 철학자이자 과학자인 레우키포스와 그의 제자 데모크리토스가 만들어낸 ‘더는 쪼갤 수 없음’이라는 뜻의 atomos에서 유래하였다. 19세기 영국 화학자이자 물리학자인 존 돌턴이 모든 물질은 원자로 이루어졌다는 원자 이론을 발표하면서 지금과 같이 원자로 불리게 되었다. 이후 1922년 노벨 물리학상을 받은 양자역학의 아버지 보어에 의해 핵과 전자로 구성된 현대적 원자 모델이 정립되었다. 빛을 측정해 어떤 원자로부터 나왔는지 확인원자는 양성자와 중성자로 구성된 원자핵과 그 주위를 돌고 있는 전자로 구성되어 있다. 전자는 특정 궤도에만 위치하고, 이 궤도를 준위라 부른다. 높은 준위에 있다는 것은 에너지가 크다는 것을 의미하며, 낮은 준위로 이동하면 에너지를 방출한다. 이때 방출하는 에너지는 전자기파, 즉 빛의 형태를 띤다. 원자에 따라 전자의 에너지 준위가 다르므로 방출하는 빛의 에너지를 측정하면 어떤 원자에서 나온 것인지를 구분해 낼 수 있게 된다. 이를 원자분광학이라 부르며, 원자에서 방출되
-
과학과 놀자
몸에서도 나오고 우주에서도 들어오는 방사선
방사선이란 단어를 들으면 보통 어떤 느낌이 들까? 방사선을 공부하고, 다뤄온 필자지만 일반인에게 방사선이라는 단어가 기분 좋게 다가가지 않으리라는 건 쉽게 예상 가능하다. 하지만 방사선은 우리 몸에서도 지금 나오고 있다. 인체를 구성하는 성분에는 칼륨-40, 탄소-14, 루비듐-87, 납-210, 폴로늄-210과 같은 방사성동위원소가 포함되어 있어 방사선을 계속 방출한다. 체중 60kg 성인 기준으로, 약 6000~7000Bq(베크렐, 1Bq은 1초에 1개의 원자핵이 붕괴하면서 방출하는 방사능)정도라고 한다.인간뿐 아니라 지구에 존재하는 모든 생명체와 물질은 조금씩 방사선을 내뿜는다. 우리는 방사선에 둘러싸여 있는 셈이다. 그렇다면 우리는 두려움에 떨며 살아야 할까? 결론부터 말하자면 전혀 그렇지 않다. 모든 생명체는 주위에서 발생하는 방사선에 적응하고 진화하며 생명을 유지해왔고 앞으로도 그럴 것이기 때문이다. 자연방사선과 인공방사선지구상의 환경방사선은 자연적으로 존재하는 자연방사선과 인위적으로 생성한 인공방사선 두 가지로 나뉜다. 자연방사선은 지구를 구성하는 지각에 포함된 천연 방사성핵종에서 방출하는 지각방사선, 우주에서 쏟아져 들어오는 우주방사선, 그리고 생명체가 방출하는 방사선으로 구분된다. 인공방사선은 인간의 필요에 의해 인공적으로 발생시킨 방사선인데 우리는 알파선, 베타선, 감마선, 엑스선과 같은 방사선을 인위적으로 만들어 질병 치료와 검사, 구조물 비파괴 검사 등에 활용한다.그렇다면 우리는 이런 환경방사선에 얼마나 노출되고 있을까? 지각을 구성하는 물질은 지역별로 다르기 때문에 지각방사선 노출량은 나라별 도시별로 차이가 크다. 일반적
-
과학과 놀자
연구용 원자로와 가속기에서 만들어진 중성자와 방사광…10-9m 크기 나노세계의 비밀을 푸는 열쇠
대규모 시설인 연구용 원자로와 가속기는 다양한 용도를 가지고 있다. 연구용 원자로라고 하면 미국 과학자 엔리코 페르미가 건설한 최초의 원자로와 같이 시험용으로 만든 원자로를 연상하기 쉽다. 그리고 가속기라고 하면 스위스 제네바에 있는 유럽원자핵공동연구소(CERN)의 강입자가속기와 같이 원자보다 작은 아원자입자를 연구하는 시설을 먼저 떠올릴 것이다. 그런데 연구용 원자로와 가속기는 의외로 원자나 분자가 이루는 나노미터() 크기의 세계, 즉 나노 세계를 관찰하는 데에도 대단히 유용하게 사용되며, 현대 문명에 직접적인 영향을 주고 있다. 방사광과 중성자를 햇빛 대신 사용17세기 네덜란드의 안토니 반 레벤후크가 직접 제작한 현미경으로 미생물을 최초로 발견한 것은 일대 사건이었다. 생명에 대해 인류가 갖고 있던 기존의 관념이 뒤집어졌고 이후 많은 질병의 원인을 알아내고 현대적인 위생관념이 성립하는 계기가 되었다. 이어진 산업혁명 시대에는 현미경이 제품 개발과 품질 확인에 유용하게 사용되었다. 포목상이던 레벤후크도 천의 품질을 확인할 목적으로 현미경을 만들었다고 알려져 있다. 이와 같이 인간의 삶에 광범위하게 영향을 끼쳤기 때문에 현미경은 대중에 널리 알려진 과학 도구가 되었다.레벤후크가 만든 현미경은 구형의 렌즈가 하나만 달린 단안경에 불과했다. 지난 몇 세기 동안 눈으로 볼 수 없는 작은 세계를 관찰하려는 과학자들의 노력으로 광학현미경은 발전을 거듭했으며, 현대에는 수십만 배의 배율을 가진 전자현미경에서 원자 하나하나를 구분할 수 있는 경지에 이른 주사터널링현미경(STM)까지 다양한 장비가 일상적으로 사용되기에 이르렀다.연