#한국생명공학연구원
-
과학과 놀자
북극·에베레스트산에서도 발견되는 미세플라스틱 밀도가 낮고 가벼워 공기를 통해서도 쉽게 이동
미세플라스틱은 해양뿐만 아니라 토양, 대기 등 우리를 둘러싼 환경 거의 모든 곳에 존재한다고 할 수 있다. 그러나 미세플라스틱의 영향은 아직 잘 모르는 것도 사실이다. 지피지기면 백전백승이라고 했다. 미세플라스틱에 대한 막연한 두려움과 걱정보다는 미세플라스틱과 환경의 상호작용, 생체 내 분포, 거동, 모니터링 등 미세플라스틱이 미치는 영향에 대한 자료와 정보를 꾸준히 모아 미세플라스틱의 위험성을 명확히 알아야 대응을 할 수 있을 것이다.이와 함께, 미세플라스틱을 낳는 플라스틱의 생산과 소비, 그리고 폐기와 재활용 등의 제도적 관리방안을 마련하고 올바른 사용에 대한 고민과 노력을 병행해야 한다. 또한 기존 석유화학 기반의 플라스틱을 대신할 수 있는 생분해성 바이오 플라스틱 등 대체 플라스틱에 대한 연구개발도 미세플라스틱을 포함한 플라스틱 폐기물 문제를 해결하는 대안이 될 것이다. 플라스틱 가득한 세상플라스틱(plastic)이 무엇인지 알아보자. 먼저 석유를 분별 증류하여 얻은 나프타로부터 플라스틱의 원료가 되는 에틸렌(ethylene), 프로필렌(propylene), 부타디엔(butadiene) 등 기초유분을 생산한다. 이 기초유분을 중합과정(polymerization)을 거쳐 폴리에틸렌(PE·polyethylene), 폴리프로필렌(PP·polypropylene) 등 고분자 형태로 만들고 이것을 펠릿이라 부른다. 다시 펠릿을 사출, 성형이라는 과정을 통해 원하는 모양으로 가공하여 만든 결과물이 플라스틱이다. 우리가 사용하는 칫솔, 비누곽, 일회용 컵, 그리고 비닐봉투를 비롯해 TV 리모컨과 휴대폰과 같은 전자제품에 이르기까지 생활에 필요한 형태와 모양으로 만들어 내는 것이 플라스틱의 가장 큰 특징이다.그런
-
과학과 놀자
2050년엔 지금보다 에너지가 3~5배 필요하다는데…유엔 '지속가능개발목표' 해결 위한 과학기술 역할 더욱 커져
산업혁명 이후 과다하게 사용한 화석에너지로 인해 지구는 심각한 환경문제뿐만 아니라 식량문제, 보건문제를 초래하고 있다. 기후변화와 코로나 팬데믹(대유행)으로 경제력이 부족한 개발도상국가가 더 큰 어려움을 겪고 있다. 유엔 식량농업기구(FAO)는 현재 세계 인구(약 78억 명)가 2050년이면 97억 명이 될 것이며 지금 추세대로 에너지와 식량을 사용하면 2050년에는 지금에 비해 에너지는 3~5배, 식량은 1.7배가 필요하다고 전망하고 있다.개도국 사람들도 소득이 증가하면 화석에너지와 동물성 단백질을 많이 소비할 것이다. 여기에 기후재앙까지 고려한다면 지구는 지속가능발전이 어려울 수 있다. 유엔은 2015년 말 인류가 당면한 많은 문제를 2030년까지 해결하기 위해 ‘지속가능개발목표(SDGs 2016~2030: Sustainable Development Goals)’를 출범시켰다. 유엔과 국제사회의 가장 많은 혜택을 받은 우리는 국제사회와 약속한 온실가스 감축은 물론 SDGs 이행을 위해 솔선수범해야 할 책임이 있다. SDGs는 17개 큰 목표로 구성유엔이 설정한 SDGs는 ‘누구도 소외되지 않는’ 지속가능한 사회로 발전하기 위해 빈곤퇴치, 기아해결 등 17개 큰 목표와 169개 세부목표를 달성하는 것이다. SDGs는 크게 인류의 보편적 문제(가난, 기아, 질병, 교육 등), 지구 환경문제(기후변화, 에너지, 환경오염, 물, 생물다양성 등), 경제사회문제(주거, 생산과 소비 등)로 구분할 수 있다. 이들 문제는 서로 연관돼 있으며 기후위기와 코로나 팬데믹 상황에서 SDGs를 달성하기 위해선 많은 어려움이 있을 것으로 예측된다.SDGs는 경제성장의 중요성을 재조명하면서 이에 대한 구체적인 전략으로 과학기술혁신(STI: Science Technology Innovation)
-
과학과 놀자
식물의 키, 성장 호르몬 '지베렐린'이 결정한다
식물은 종자에서 싹이 트고 자라서 꽃이 피고 열매를 맺으면서 일생(life cycle)을 마친다. 이 과정에는 많은 종류의 식물호르몬이 관여한다. 식물호르몬은 식물체 내에서 생산돼 미량으로도 다양한 생리작용을 조절하는 유기화합물이다. 지금까지 밝혀진 식물호르몬은 옥신, 사이토키닌, 지베렐린, 아브시스산, 에틸렌, 브라시노스테로이드, 살리실산, 자스몬산 등 10종이 있다. 이 가운데 지베렐린(gibberellic acid, GA)은 식물의 키(신장)를 조절하고 종자발아 촉진 등에 관여하는 물질이다.사람에게도 성장호르몬이 있어 키가 작은 어린이를 크게 하는 데 사용하듯이 식물에서도 전통육종에 의한 방법 외에 화학물질, 유전자변형으로 키를 조절할 수 있다. GA 발견의 역사, 생체에서 만들어지는 과정(생합성 과정), 농업적 이용 그리고 분자육종에 대해서 알아본다. 지베렐린(GA)의 발견GA 연구는 1920년대 일본의 식물병리학자에 의해 시작됐다. 벼농사를 위한 못자리에서 벼를 연약하고 웃자라게 하는 병의 원인을 규명하려는 것이 시작이었다. 당시 벼가 웃자라서 농사에 피해를 주기 때문에 벼 키다리병으로 불렸는데, 이를 예방하기 위해 못자리용 벼 종자를 반드시 소독을 해야 했다. 지금은 벼농사용 묘를 공장에서 건전하게 생산하고 있어 벼 키다리병을 볼 수 없다. 못자리 농사가 반(半)농사라 할 정도로 묘를 튼튼하게 키우는 것은 지금도 중요하다. 도쿄대 농화학자들은 많은 시행착오 끝에 벼를 웃자라게 하는 원인이 벼에 감염된 곰팡이(Gibberella fujikuroi)가 생산하는 물질(독소)인 것을 발견하고 1938년 GA를 분리하게 된다.초기의 GA는 몇 종류의 곰팡이에서 발견되다가 1950년대 식물에 보편적으로 존재하
-
과학과 놀자
멸종위기종 복원이나 식물 대량생산에 유용한 식물조직배양기술
우리는 식물의 고마움 덕분으로 살고 있다고 해도 지나치지 않다. 식물은 온실가스의 주범인 이산화탄소를 흡수해 탄소동화작용(광합성)으로 산소, 식량, 의약품 그리고 종이, 의류 등 각종 산업소재를 생산한다. 그래서 식물을 최고의 공장(plant)이라고 한다. 산업혁명 이후 과다한 화석에너지 사용으로 식물을 비롯한 생물종이 위협받고 있어, 유엔(UN)은 1993년 '생물다양성협약'을 체결해 생물종 보존을 위해 노력하고 있다.그럼에도 불구하고 많은 생물종은 계속 감소하거나 멸종하고 있다. 식물조직배양기술은 기후위기 시대 멸종위기식물을 복원하거나 농작물을 대량 번식할 뿐 아니라 식물이 생산하는 유용 소재를 배양기에서 안정적으로 생산할 수 있어 주목받고 있다.식물조직세포는 적정 배양 환경에서 완전한 모(원래)식물체로 재생될 수 있는 잠재력인 ‘분화전능성 또는 전체형성능력(totipotency)’을 가지고 있다. 식물의 분화전능을 활용한 식물세포·조직배양기술로 생산되는 제품은 우리 생활 속에서 쉽게 접할 수 있다. 조직(세포)배양에 의한 유용식물의 대량 번식과 유용물질의 대량 생산 사례와 조직배양기술의 전망을 소개한다. 조직배양으로 식물체 대량 복제우리는 무균 조건의 적절한 배양 환경에서 유용한 식물체를 짧은 시간에 대량으로 생산할 수 있다. 식물체를 생산하는 방법에는 식물의 생장점에서 ‘체세포배(somatic embryo)’를 유도해 재분화하는 ‘체세포배발생(embryogenesis)’과 식물 줄기, 잎, 뿌리 등 절편을 이용하는 ‘기관형성(organogenesis)’이 있다.아름다운 심비디움(양난의 일종), 백합, 거베라 등 많은 화훼류가 조직배양기술로 양산