#적분의 탄생
-
학습 길잡이 기타
그리스시대 '도형의 넓이' 구하며 발전
미분과 적분 중 어느 것이 먼저 발견되었을까요? 또 그 시기의 차이는 얼마나 될까요?미분은 17세기에 그 모습을 드러냈습니다. 미분과 함께 호도법, 함수 등 수학의 근본을 형성하는 개념들도 이 시기에 급격히 발전했습니다. 그러나 적분의 이야기는 훨씬 오래전으로 거슬러 올라갑니다. 이 칼럼에서는 적분이 고대로부터 어떻게 발전해 현대 수학의 중심축이 되었는지 탐구해보겠습니다.고대 그리스 시대, 아르키메데스는 그의 저작 <포물선의 구적법>에서 수학적 증명을 통해 포물선과 직선으로 둘러싸인 도형의 넓이가 내접하는 삼각형 넓이의 4분의 3배가 된다는 것을 밝혔습니다. 아르키메데스는 포물선을 가로지르는 직선을 한 변으로 하는 내접삼각형을 그리는 방법으로 시작했습니다. 그는 이 삼각형을 기반으로 포물선을 두 구간으로 나누고, 이 과정을 반복해 무수히 많은 내접삼각형을 그려나갔습니다.이러한 과정을 통해 아르키메데스는 초기에 그린 삼각형의 넓이를 ‘1’로 설정하고, 모든 삼각형의 넓이 합을 계산하는 공식을 도출했습니다. 이 연속된 접근 방식은 기하학적 적분의 초기 형태를 보여주며, 수학사에서 중요한 발견으로 평가받습니다. 아르키메데스의 이 방법은 단순한 수학적 호기심을 넘어 복잡한 도형의 넓이를 계산하는 방법론의 기초를 마련했습니다.갈릴레이의 제자인 카발리에리는 다각형이 아닌 평면도형의 넓이나 입체도형의 부피를 구하는 방법에 대한 놀라운 방법을 제시했습니다. 두 입체를 같은 평면에 평행한 다수의 평면으로 자를 때 잘린 부분의 면적이 일정 비율을 유지한다면, 그 입체의 전체 부피도 같은 비율을 유지한다는 것에서 착안했습니