#증명
-
최준원의 수리 논술 강의노트
'롤의 정리'는 반드시 직접 증명할 수 있어야
아래의 예시 논제를 통해 출제자가 묻고자 하는 것을 한 줄로 요약하자면 ‘롤의 정리를 직접 증명해보았는가?’이다.극한미분법의 기본 논증추론에 주로 사용되는 핵심 정리에는 최대최소의 정리와 롤의 정리가 있으며, 이 중 최대최소의 정리는 증명 없이 기본 성질로 사용할 수 있지만 롤의 정리는 반드시 직접 증명할 수 있어야 한다. 이때 최대최소의 정리가 롤의 정리를 증명하는 기본 성질로 활용되므로 이들 간의 관계를 잘 연결해 증명 연습을 해봐야 한다. 포인트미분계수의 극값정리 및 평균값정리도 롤의 정리의 개념에 포함된다.
-
최준원의 수리 논술 강의노트
직접 증명이 막힐 때는 '결론'을 부정해 볼 것
고1 수학에서 배운 바와 같이 어떤 명제와 그 ‘대우’ 명제의 참·거짓은 동일하다. 따라서 직접 증명이 막히면 결론을 부정했을 때 가정에 위배되는 모순이 생기는지를 보이면 된다. 이러한 증명법을 간접 증명 또는 귀류법이라고 하며 수리논술 답안을 채점할 때 직접 증명과 간접 증명의 논리성은 동일하게 인정되므로 증명 문제가 나오면 간접 증명을 항상 염두에 둘 필요가 있다. 포인트수리논술에서 출제되는 증명 문제의 유형에는 가정으로부터 결론을 이끌어내는 일반적인 직접 증명 외에 수학적 귀납법에 의한 증명과 귀류법(간접증명) 등이 있다.
-
진학 길잡이 기타
극한 증명문제의 수렴조건
연속 조건이나 미분가능 조건도 넓게는 수렴성의 조건에 포함되므로 미분 증명 문제도 극한 증명문제에 해당된다. 극한 증명문제가 출제됐을 때 제일 먼저 해야 할 것은 수렴조건이 주어졌는지를 확인하는 것이며, 이후 답안 작성 과정에서 주어진 수렴 조건을 필요한 시점에 정확하게 적용할 수 있도록 해야 한다. ☞ 포인트유튜브에 2=4임을 증명하는 흥미로운 내용의 영상이 소개된 적이 있다. 해당 영상의 내용은 ‘x의 x제곱의 x제곱의 x제곱…’과 같이 x의 거듭제곱을 무한히 시행한 것을 a라고 두면 a=2=4일 때 등식이 모두 성립하게 되어 2=4라는 결론을 내릴 수 있음을 보여주는 과정으로 되어 있다(본문 참조). 이 증명 과정의 근본적인 오류는 무한히 발산하는 식을 하나의 실수 a라고 단정한 것에서부터 시작된다. 이렇듯 논리적인 증명 과정에 있어서 출발점에 해당되는 근거나 조건을 명확히 하지 않으면 오류가 발생할 수 있다. 수리논술 답안을 작성할 때 문제에 주어진 조건이나 증명하려는 명제의 대전제를 명확히 한 상태에서 답안 작성을 시작하는 것이 매우 중요하다.