본문 바로가기
  • 홍성호 기자의 열려라 우리말

    '1킬로'는 무게일까? 길이일까? 배수 뜻하는 접두어…부피·전력에도 사용

    지난달 말 삼성전자가 미국 제2 파운드리(반도체 수탁생산) 공장을 텍사스주 테일러시에 짓기로 했다는 소식이 전해졌다. 투자비만 170억 달러(약 20조 원)로, 삼성전자의 해외 단일 투자로는 최대 규모다. 업계에서는 5㎚(나노미터·1㎚=10억분의 1m) 이하 초미세 공정이 깔릴 것으로 예상하고 있다. 밀리·센티·킬로는 배수 나타내는 접두어‘㎚’는 길이를 나타내는 단위로, 미터법상의 단위기호 가운데 하나다. 일상에서는 쓸 일이 드물어 언론에서 보도할 때는 독자 이해를 돕기 위해 통상 괄호 안에 설명을 덧붙인다. 우리말에서 ‘나노미터’는 1990년대 들어 언론을 통해 활발하게 등장하기 시작한다. 이 말이 대중적으로 알려지게 된 것은 한국 반도체의 발전과 궤를 같이한다. 삼성전자는 1992년 64메가D램을 세계 최초로 개발한 데 이어 그해 시장점유율 세계 1위에 올랐다. 덩달아 ‘나노미터’란 용어도 90년대를 거치면서 신문 지면을 달궜다.나노미터의 나노(n)는 ‘10억분의 1’을 나타내는 접두어로, 소문자 n을 기호로 쓴다. 단위기호와 마찬가지로 접두어도 대문자·소문자를 엄격히 구별해 써야 한다. n을 자칫 대문자 N으로 쓰면, 이는 자석이나 나침반 따위에서 북쪽을 나타내는 기호가 된다. 또는 ‘질소’의 원소기호이기도 하므로 주의해야 한다. 일상에서는 ㎞(킬로미터)를 대문자 KM 또는 Km으로 잘못 쓰는 사례가 많다. K는 ‘켈빈’이라는 전력 단위고, M은 ‘메가(100만 배)’를 뜻하는 접두어라 이상한 표기가 되고 만다.전력을 표시할 때도 조심해야 한다. 가령 ‘100㎽’를 무심코 ‘100㎿’라고 적었다면 어떻게 될까

  • 과학과 놀자

    물질을 통과해 이온화시키는 방사선을 진단과 치료에 활용 알파선·베타선은 종양 치료…감마선은 체외진단에 적합

    원자란 화학반응을 통해 더 이상 쪼개질 수 없는, 물질을 구성하는 기본 입자다. 원자는 얼마나 작을까? 일반적으로 원자의 크기는 0.1㎚(나노미터)로 원자 1억 개를 한 줄로 세워야 겨우 1㎝가 된다. 흔히 알려져 있듯 원자는 원자핵과 그 주변을 도는 전자로 구성되며 원자핵은 양성자와 중성자로 이뤄져 있다. 자연 상태에서 같은 양성자 수를 가지나 중성자 수가 다른 다양한 원소를 서로 동위원소라 부르는데, 양성자와 중성자 비율에 따라 안정한 동위원소가 되기도, 불안정한 방사성동위원소가 되기도 한다. 방사성동위원소가 내보내는 방사선의 에너지를 사용방사성동위원소는 의료, 산업, 농업 및 식품 가공 등 다양한 분야에서 이용되고 있다. 특히 의료 분야에서의 활약이 두드러지는데, 종양 치료나 혈액 검사 같은 체외 진단에 주로 활용된다. 그렇다면 의료용 방사성동위원소는 어떤 특성 차이로 치료용과 진단용으로 나뉘어 사용되는 걸까? 바로 방사성동위원소가 내보내는 방사선의 에너지 성질에 따른 차이다. 방사선은 보이지 않는 광선과 같은데, 갖고 있는 에너지가 커서 물질을 통과하며 이온화시키는 방사선을 ‘이온화 또는 전리 방사선’이라고 부른다. 가시광선, 마이크로파, 라디오파, 적외선, 자외선 등 이온화 능력이 없는 방사선은 ‘비이온화 또는 비전리 방사선’이라고 정의한다.의료용으로 사용하는 방사성동위원소는 알파선, 베타선, 감마선과 같은 이온화 방사선을 방출한다. 종이 한 장도 투과하지 못하지만 에너지는 가장 큰 알파선과 역시 투과력은 강하지 않지만 빛보다 빠른 베타선은 주로 종양 치료에 사용한다. 엑스선과 같은 전자기파인데 물질을 투

  • 과학과 놀자

    연구용 원자로와 가속기에서 만들어진 중성자와 방사광…10-9m 크기 나노세계의 비밀을 푸는 열쇠

    대규모 시설인 연구용 원자로와 가속기는 다양한 용도를 가지고 있다. 연구용 원자로라고 하면 미국 과학자 엔리코 페르미가 건설한 최초의 원자로와 같이 시험용으로 만든 원자로를 연상하기 쉽다. 그리고 가속기라고 하면 스위스 제네바에 있는 유럽원자핵공동연구소(CERN)의 강입자가속기와 같이 원자보다 작은 아원자입자를 연구하는 시설을 먼저 떠올릴 것이다. 그런데 연구용 원자로와 가속기는 의외로 원자나 분자가 이루는 나노미터() 크기의 세계, 즉 나노 세계를 관찰하는 데에도 대단히 유용하게 사용되며, 현대 문명에 직접적인 영향을 주고 있다. 방사광과 중성자를 햇빛 대신 사용17세기 네덜란드의 안토니 반 레벤후크가 직접 제작한 현미경으로 미생물을 최초로 발견한 것은 일대 사건이었다. 생명에 대해 인류가 갖고 있던 기존의 관념이 뒤집어졌고 이후 많은 질병의 원인을 알아내고 현대적인 위생관념이 성립하는 계기가 되었다. 이어진 산업혁명 시대에는 현미경이 제품 개발과 품질 확인에 유용하게 사용되었다. 포목상이던 레벤후크도 천의 품질을 확인할 목적으로 현미경을 만들었다고 알려져 있다. 이와 같이 인간의 삶에 광범위하게 영향을 끼쳤기 때문에 현미경은 대중에 널리 알려진 과학 도구가 되었다.레벤후크가 만든 현미경은 구형의 렌즈가 하나만 달린 단안경에 불과했다. 지난 몇 세기 동안 눈으로 볼 수 없는 작은 세계를 관찰하려는 과학자들의 노력으로 광학현미경은 발전을 거듭했으며, 현대에는 수십만 배의 배율을 가진 전자현미경에서 원자 하나하나를 구분할 수 있는 경지에 이른 주사터널링현미경(STM)까지 다양한 장비가 일상적으로 사용되기에 이르렀다.연

  • 과학과 놀자

    사물의 '크기'는 표준화된 단위로 나타낼 수 있다는데…크고 작은 속성을 나타내는 '스케일'로 표현할 수도

    ‘크기’와 ‘스케일(scale)’이라는 용어는 과학의 모든 분야에서 사용되고 있는 매우 친숙한 것이다. 과학에서 중요한 핵심 개념들에 대해서는 꽤 긴 시간을 들여 학습하는데, 그 친숙함에 비해 이 용어들이 물질세계에서 갖는 의미를 생각해 볼 기회는 많지 않은 것 같다. 미국 NSTA(National Science Teachers Association)에서는 나노 과학과 공학에서 핵심 개념 9개를 선정하고 소개하는 책을 출간했는데, 첫 번째 핵심 개념을 ‘크기’와 ‘스케일’로 정의하고 있다. 크기는 표준화된 단위로 표현크기는 ‘사물의 양 또는 큰 정도’로 정의된다. 모든 사물은 1, 2, 3차원으로 정의될 수 있는 크기를 갖는다. 일반적으로 사물의 크기를 나타내는 길이, 면적, 부피는 표준화된 단위로 정의된 수치로 나타낸 것이다. 길이는 미터로, 면적은 평으로, 부피는 리터로 나타내 그 사물의 크기를 절대적인 값으로 표현한다. 예를 들어 어느 35인승 버스의 길이가 11미터(m)라면, 이는 단위 길이에 해당하는 1미터 크기의 11배가 되는 길이라는 뜻이다. 아파트 면적을 얘기할 때 ‘평(坪)’이라는 단위를 주로 사용하는데, 사람이 한 다리를 축으로 해 다른 다리로 넓게 원을 그리면 그 면적이 대략 1평이 된다. 그래서 25평 아파트라고 하면 그만한 원 면적의 25배가 됨을 나타낸다. 옛 속담에 ‘발 없는 말이 천리 간다’고 하는데, 이때 ‘리(里)’는 마을 하나의 크기로 대략 4㎞쯤 되는 거리가 기준이 돼 ‘천리’는 마을 천 개를 지나갈 만큼 먼 거리를 나타낸다.즉, 사물의 크기를 나타내는 방법의 기본 속성은 크기 기준이 되는 사물을 정하고, 이 기준과 비교해 사물의 크기를

  • 과학과 놀자

    10펨토미터(㎙) 크기 중이온을 15만분의 1초 만에 95.5m 날려

    고흐의 그림 ‘별이 빛나는 밤’은 우리가 보는 밤하늘과 너무나 달라 낯설지만 고흐의 작품인 만큼 친근함마저 든다. 21세기 첨단 과학의 시대를 살고 있는 우리는 19세기 고흐의 작품을 보면서 무엇을 생각할 수 있을까. 과연 고흐는 어떻게 우리가 보지 못한 밤하늘을 볼 수 있었을까.우리는 눈을 통해 세상을 바라본다. 눈으로 들어온 빛을 망막세포가 감지하고, 감지된 정보를 시신경이 뇌로 전달해 세상을 인식하는 것이다. 결국 본다는 것은 인간의 뇌에 잠재된 창의성과 지적 능력이 반영된 결과다. 고흐의 창의성이 우리가 보지 못하는 밤하늘의 또 다른 모습을 보게 한 것이다.과학자의 새로운 눈 중이온가속기현대 과학은 보는 과정을 첨단 장비와 인공지능으로 대체해 인간의 눈을 통해 볼 수 없는 매우 작은 세계의 새로운 모습을 우리에게 보여주고 있다. 첨단 과학의 시대에 우리가 볼 수 있는 가장 작은 세계는 어떤 모습일까. 과연 우리는 어디까지 볼 수 있을까. 그리고 이 과정에서 인간의 창의성과 지적 능력은 어떤 역할을 할까.현미경의 발견으로 인류는 아주 작은 세계를 볼 수 있는 새로운 눈을 가지게 됐다. 식물의 내부 구조에서 작은 미생물에 이르기까지 마이크로 세계의 모습들이 현미경을 통해 인류에게 드러났다. 그런데 현미경은 빛을 이용하는 것으로, 마이크로미터(㎛)보다 작은 세계는 볼 수가 없다. 마이크로미터는 100만분의 1m에 해당한다.이후 전자 현미경의 발견으로 반도체의 표면과 같이 마이크로미터보다 훨씬 작은 세계를 직접 촬영할 수 있게 됐다. 전자현미경은 빛이 아니라 전자를 이용해 물질의 구조를 보는 장치로, 물리학의 양자역학 원리가 적용된다. 현대